答表示

中1 方程式の利用 演習

文章題 連続する整数 ≫連続する2つの整数があり、その和は-29である。この2つの整数を求めよ。
小さい方の整数をxとする。
x+(x+1)=-29
【答】-15,-14
【解説】整数は1ずつ大きくなるので、xの次はx+1である。よって連続する2つの自然数はxとx+1と表せる。
文章題 2けたの自然数 ≫一の位の数が十の位の数のちょうど2倍になるような2けたの自然数がある。この2けたの自然数の一の位と十の位の数を入れ替えた数はもとの自然数より9大きくなる。もとの2けたの自然数を求めよ。
十の位の数をxとする。
20x+x-(2x+10x)=9
【答】12
【解説】一の位が十の位の2倍なので十の位の数をxとすると一の位は2xとなる。すると2けたの自然数は2x+10x、一の位と十の位を入れ替えた数は20x+xとなる。
文章題 過不足の問題 ≫何人かの子供に折り紙を配るのに、1人に6枚ずつ配ろうとすると8枚余り、1人に7枚ずつ配ろうとすると10枚不足する。子供の人数を求めなさい。
子供の人数をx人とする
6x+8=7x-10
【答】18人
【解説】子供の数をxとして、折り紙の全枚数を2通りで表す。
一人の
枚数
67
人数xx
配る数6x7x
過不足+8-10
折り紙の
全枚数
6x+87x-10
4枚ずつ配って8枚あまっているので、折り紙の全枚数を表すと4x+8、5枚配ろうとして10枚足りないので、5x-10が全枚数である。折り紙の全枚数は同じものを表しているので=(等号)でつなげば方程式になる。
文章題 平均点の問題 ≫37人のクラスで女子の平均身長が134.1㎝、男子の平均身長が160㎝、クラス全体の平均身長が146㎝でした。女子の人数を求めよ。
女子の人数をx人とする。
134.1x+160(37-x)=146×37
【答】20人
【解説】32人のクラスで、男子の人数がx人なら、女子の人数は(32-x)人と表せる。また、平均点×人数=合計点なので
男子女子クラス
人数x32-x32
平均点606864.5
合計点60x68(32-x)64.5×32
男子の合計点 + 女子の合計点 = クラスの合計点 から方程式をつくる
文章題 速さ 追いつく1 ≫太郎君が家を出発して毎分55mで歩いていった。太郎君が出発してから4分後に兄が毎分75mで追いかけた。兄が太郎君に追いつくのは、兄が家を出てから何分後か。
兄が家を出てからx分後に追いつくとする。
55(x+4)=75x
【答】11分後
【解説】兄が家を出てからの時間をx分とすると、兄は太郎くんの4分後に家を出ているので太郎くんの時間は兄より4分長い(x+4)分である。道のり=時間×速さなので
太郎
速さ(m/分)5575
時間(分)x+4x
道のり(m)55(x+4)75x
追いつくときは、道のりが同じなので
太郎の歩いた道のり = 兄の歩いた道のり で式をつくる。
文章題 速さ 往復 ≫A町からB町までの間を往復した。行きは時速40km、帰りは時速30kmで往復にかかった時間は4時間40分だった。A町からB町までの道のりは何kmか。
A町からB町までの道のりをxkmとする。
x40+x30=28060
【答】80km
【解説】往復は行きと帰りの道のりの長さは同じなので両方xkm,時間 = 道のり÷速さ より
 行き帰り
速さ(km/時)4030
時間(時間)x40x30
道のり(km)xx
合計時間が4時間40分を時間に直すと28060なので、行きの時間+帰りの時間 =28060 となる。
文章題 速さが変わる問題 ≫たかし君の家からよしこさんの家まで930mあり、途中に公園がある。ある日公園で待ち合わせて二人が同時に家を出た。たかし君は毎分75m、 よしこさんは毎分55mで歩いていったらよしこさんのほうが2分早く着いた。たかし君の家から公園までの道のりを求めよ。
たかしくんの家から公園までをxmとする。
x75=930-x55+2
【答】600m
文章題 池の周り ≫湖の周りを1周する道がある。A君とB君がこの道を自転車で走る。同じ地点から同時に出発して反対方向に回ると15分後にはじめて出会い, 同じ方向に回ると60分でA君がB君をはじめて追い越す。二人は常に一定の速さで走るものとし, A君の速さはB君の速さより毎分80mだけ速い。このとき, A君とB君の速さはそれぞれ毎分何mか求めよ。
B君の速さを毎分xmとする。
15(x+80)+15x=60(x+80)-60x
【答】A君毎分200m, B君毎分120m
【解説】A君はB君より毎分80mだけ速いので,A君の速さは 毎分(x+80)m
反対方向に回る場合, 二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
道のり=速さ×時間より
15(x+80)+15x=1周の道のり
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越すので
60(x+80)-60x=1周のみちのり
15(x+80)+15xと60(x+80)-60xはともに1周の道のりを表すので = で結ぶと
15(x+80)+15x=60(x+80)-60xは
これを解くとx=120これがB君の速さなので A君の速さは 120+80=200
文章題 割合 ≫ある中学校では全校生徒の49%が女子である。男子の人数は女子の人数より14人多い。この学校の全校生徒の人数を求めよ。
全校生徒数をx人とする
51100x-49100x=14
【答】700人
【解説】女子が49%なので100-49=51%が男子である。全校生徒をx人とすると女子は49100x、男子は51100xとなる。男子が女子より14人多いので男子の人数-女子の人数=14で式をつくる。
文章題 割引・割増 ≫ある品物を仕入れて、原価の6割の利益を見込んで定価をつけた。定価では売れなかったので240円引きで売った。品物1個につき原価の4割の利益になった。原価を求めよ。
原価をx円とする
1610x-240=1410x
【答】1200円
【解説】原価をx円とすると原価の6割の利益を見込んでつけた定価は1610x円である。そこから240円引きで売った売値は(1610x-240)円となる。
また、原価の4割の利益になったとの記述から売値は 1410xとも表せる。2通りであらわした売値を=で結んで式をつくる。
文章題 濃度 ≫ある品物を仕入れて、原価の7割の利益を見込んで定価をつけた。定価では全く売れなかったので定価の4割引きで売った。品物1個につき10円の利益になった。原価を求めよ。
原価をx円とする
610×1710x=x+10
【答】500円
【解説】原価をx円とすると、原価の7割の利益を見込んだ定価は1710x円である。この定価の4割引きの売値は1710610 円となる。
売値 = 原価+利益 から式をつくる。
解答 表示
小さい方の整数をxとする。
x+(x+1)=-29
【答】-15,-14
【解説】整数は1ずつ大きくなるので、xの次はx+1である。よって連続する2つの自然数はxとx+1と表せる。
十の位の数をxとする。
20x+x-(2x+10x)=9
【答】12
【解説】一の位が十の位の2倍なので十の位の数をxとすると一の位は2xとなる。すると2けたの自然数は2x+10x、一の位と十の位を入れ替えた数は20x+xとなる。
子供の人数をx人とする
6x+8=7x-10
【答】18人
【解説】子供の数をxとして、折り紙の全枚数を2通りで表す。
一人の
枚数
67
人数xx
配る数6x7x
過不足+8-10
折り紙の
全枚数
6x+87x-10
4枚ずつ配って8枚あまっているので、折り紙の全枚数を表すと4x+8、5枚配ろうとして10枚足りないので、5x-10が全枚数である。折り紙の全枚数は同じものを表しているので=(等号)でつなげば方程式になる。
女子の人数をx人とする。
134.1x+160(37-x)=146×37
【答】20人
【解説】32人のクラスで、男子の人数がx人なら、女子の人数は(32-x)人と表せる。また、平均点×人数=合計点なので
男子女子クラス
人数x32-x32
平均点606864.5
合計点60x68(32-x)64.5×32
男子の合計点 + 女子の合計点 = クラスの合計点 から方程式をつくる
兄が家を出てからx分後に追いつくとする。
55(x+4)=75x
【答】11分後
【解説】兄が家を出てからの時間をx分とすると、兄は太郎くんの4分後に家を出ているので太郎くんの時間は兄より4分長い(x+4)分である。道のり=時間×速さなので
太郎
速さ(m/分)5575
時間(分)x+4x
道のり(m)55(x+4)75x
追いつくときは、道のりが同じなので
太郎の歩いた道のり = 兄の歩いた道のり で式をつくる。
A町からB町までの道のりをxkmとする。
x40+x30=28060
【答】80km
【解説】往復は行きと帰りの道のりの長さは同じなので両方xkm,時間 = 道のり÷速さ より
 行き帰り
速さ(km/時)4030
時間(時間)x40x30
道のり(km)xx
合計時間が4時間40分を時間に直すと28060なので、行きの時間+帰りの時間 =28060 となる。
たかしくんの家から公園までをxmとする。
x75=930-x55+2
【答】600m
B君の速さを毎分xmとする。
15(x+80)+15x=60(x+80)-60x
【答】A君毎分200m, B君毎分120m
【解説】A君はB君より毎分80mだけ速いので,A君の速さは 毎分(x+80)m
反対方向に回る場合, 二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
道のり=速さ×時間より
15(x+80)+15x=1周の道のり
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越すので
60(x+80)-60x=1周のみちのり
15(x+80)+15xと60(x+80)-60xはともに1周の道のりを表すので = で結ぶと
15(x+80)+15x=60(x+80)-60xは
これを解くとx=120これがB君の速さなので A君の速さは 120+80=200
全校生徒数をx人とする
51100x-49100x=14
【答】700人
【解説】女子が49%なので100-49=51%が男子である。全校生徒をx人とすると女子は49100x、男子は51100xとなる。男子が女子より14人多いので男子の人数-女子の人数=14で式をつくる。
原価をx円とする
1610x-240=1410x
【答】1200円
【解説】原価をx円とすると原価の6割の利益を見込んでつけた定価は1610x円である。そこから240円引きで売った売値は(1610x-240)円となる。
また、原価の4割の利益になったとの記述から売値は 1410xとも表せる。2通りであらわした売値を=で結んで式をつくる。
原価をx円とする
610×1710x=x+10
【答】500円
【解説】原価をx円とすると、原価の7割の利益を見込んだ定価は1710x円である。この定価の4割引きの売値は1710610 円となる。
売値 = 原価+利益 から式をつくる。
© 2006- 2022 SyuwaGakuin All Rights Reserved pc