答表示

中1 方程式の利用 演習

文章題 連続する整数 ≫連続する2つの偶数があり、その和は22である。この2つの偶数を求めよ。
小さい方の偶数をxとする。
x+(x+2)=22
【答】10,12
【解説】偶数は2,4,6,・・・と2ずつ大きくなるので、連続する2つの偶数はx, x+2と表せる。
文章題 2けたの自然数 ≫一の位の数が十の位の数のちょうど2倍になるような2けたの自然数がある。この2けたの自然数の一の位と十の位の数を入れ替えた数はもとの自然数より27大きくなる。もとの2けたの自然数を求めよ。
十の位の数をxとする。
20x+x-(2x+10x)=27
【答】36
【解説】一の位が十の位の2倍なので十の位の数をxとすると一の位は2xとなる。すると2けたの自然数は2x+10x、一の位と十の位を入れ替えた数は20x+xとなる。
文章題 過不足の問題 ≫長いすがいくつかある。生徒全員が長いす1脚に4人ずつかけることにしたら、19人の生徒がかけられなかった。そこで、1脚に5人ずつかけたら、いすがちょうど3脚余った。長いすの数を求めよ。
長いすの数をx脚とする。
4x+19=5(x-3)
【答】34脚
【解説】全長いす数をxとすると4人ずつ座ると4x人座れるが、19人が座れないので生徒数は(4x+19)と表せる。
5人ずつ座るといすがちょうど3脚余ったので、5人座る長いすの数は(x-3)である。よって5(x-3)が生徒数となる。2通りで表した生徒数を=で結んで方程式とする。
文章題 平均点の問題 ≫クラス35人全体の平均点が67点、女子15人の平均点が71点でした。男子の平均点を求めよ。
男子の平均点をx点とする。
71×15+20x=67×35
【答】64点
【解説】平均点×人数 = 合計点なので
男子女子クラス
人数201535
平均点x7167
合計点20x71×1567×35
男子の合計点+女子の合計点 = クラスの合計点 から方程式をつくる。
文章題 速さ 追いつく1 ≫花子さんが家をでて毎分45mで歩いていった。その10分後に母が毎分120mで花子さんを追いかけた。母が花子さんに追いつくのは花子さんが家を出てから何分後か。
花子さんが家を出てからの時間をx分とする。
45x=120(x-10)
【答】16分後 
【解説】花子さんが家を出てからの時間をx分とすると、母は10分後に家を出ているので、母の時間は花子さんより10分短い(x-10)分である。道のり=時間×速さなので
花子
速さ(m/分)45120
時間(分)xx-10
道のり(m)45x120(x-10)
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。
文章題 速さ 往復 ≫A町からB町までを往復した。行きは毎分75mで、帰りは毎分50mの速さで歩いたら往復にかかった時間は40分だった。A町からB町までの道のりは何mか求めよ。
A町からB町までをx mとする。
x75+x50=40
【答】1200m
【解説】往復では行きと帰りの道のりの長さは同じなので両方xm, 時間 = 道のり÷速さなので
 行き帰り
速さ(m/分)7550
時間(分)x75x50
道のり(m)xx
合計時間が40分なので、行きの時間+帰りの時間 =40 となる。
文章題 速さが変わる問題 ≫太郎君の家から花子さんの家まで行く途中に公園がある。太郎君の家から公園までの距離は花子さんの家から公園までの距離より150m近い。ある日太郎君が花子さんの家まで行った。太郎君は自分の家から公園まで毎分80mで歩き、公園から花子さんの家までは毎分60mで歩いた。全部で27分かかった。太郎君の家から公園までは何mか。
太郎君の家から公園までの道のりをxmとする。
x80+x+15060=27
【答】840m
【解説】太郎家から公園をxmとすると花子家から公園はそれより150m遠いので(x+150)m、時間=道のり÷速さなので
 太郎家〜公園公園〜花子家
速さ(m/分)8060
時間(分)x80x+15060
道のり(m)xx+150
時間の合計が27分を使って式をつくる。
文章題 池の周り ≫池の周りに1周800mの道がある。兄と妹が同時に同じ場所から出発して同じ方向に歩く。兄は分速96m, 妹は分速64mの場合、はじめて兄が妹を追い越すのは出発から何分後か。
出発してからの時間をx分とする。
96x-64x=800
【答】25分後
【解説】同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
この場合,兄と妹の歩いた道のりの差が800mになったときである。
道のり=速さ×時間なので
兄の歩いた道のり = 96x
妹の歩いた道のり=64x
これらの差が1周分なので
96x-64x=800
これを解くと
x=25
文章題 割合 ≫全校生徒460人のうち、自転車通学の割合は男子が全男子数の3割で、女子は全女子数の2割である。 自転車通学の人数は男女合わせて116人である。この学校の全男子数を求めよ。
全男子数をx人とする
310x+210(460-x)=116
【答】240人
【解説】全男子数をx人とすると、全女子数は(460-x)人である。
自転車通学の男子は310x、女子は210(460-x)となる。
これらの合計が116となることから方程式をつくる。
文章題 割引・割増 ≫ある品物を仕入れて、原価の4割の利益を見込んで定価をつけた。定価では全く売れなかったので定価の2割引きで売った。品物1個につき180円の利益になった。原価を求めよ。
原価をx円とする
810×1410x=x+180
【答】1500円
【解説】原価をx円とすると、原価の4割の利益を見込んだ定価は1410x円である。この定価の2割引きの売値は1410810 円となる。
売値 = 原価+利益から式をつくる。
文章題 濃度 ≫ 濃度のわからない食塩水Aと11%の食塩水Bがある。Aを100gとBを300g混ぜたら10%の食塩水になった。食塩水Aの濃度を求めよ。 【式】食塩水Aの濃度をx%とする。
 x+33=40
【答】7%
解答 表示
小さい方の偶数をxとする。
x+(x+2)=22
【答】10,12
【解説】偶数は2,4,6,・・・と2ずつ大きくなるので、連続する2つの偶数はx, x+2と表せる。
十の位の数をxとする。
20x+x-(2x+10x)=27
【答】36
【解説】一の位が十の位の2倍なので十の位の数をxとすると一の位は2xとなる。すると2けたの自然数は2x+10x、一の位と十の位を入れ替えた数は20x+xとなる。
長いすの数をx脚とする。
4x+19=5(x-3)
【答】34脚
【解説】全長いす数をxとすると4人ずつ座ると4x人座れるが、19人が座れないので生徒数は(4x+19)と表せる。
5人ずつ座るといすがちょうど3脚余ったので、5人座る長いすの数は(x-3)である。よって5(x-3)が生徒数となる。2通りで表した生徒数を=で結んで方程式とする。
男子の平均点をx点とする。
71×15+20x=67×35
【答】64点
【解説】平均点×人数 = 合計点なので
男子女子クラス
人数201535
平均点x7167
合計点20x71×1567×35
男子の合計点+女子の合計点 = クラスの合計点 から方程式をつくる。
花子さんが家を出てからの時間をx分とする。
45x=120(x-10)
【答】16分後 
【解説】花子さんが家を出てからの時間をx分とすると、母は10分後に家を出ているので、母の時間は花子さんより10分短い(x-10)分である。道のり=時間×速さなので
花子
速さ(m/分)45120
時間(分)xx-10
道のり(m)45x120(x-10)
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。
A町からB町までをx mとする。
x75+x50=40
【答】1200m
【解説】往復では行きと帰りの道のりの長さは同じなので両方xm, 時間 = 道のり÷速さなので
 行き帰り
速さ(m/分)7550
時間(分)x75x50
道のり(m)xx
合計時間が40分なので、行きの時間+帰りの時間 =40 となる。
太郎君の家から公園までの道のりをxmとする。
x80+x+15060=27
【答】840m
【解説】太郎家から公園をxmとすると花子家から公園はそれより150m遠いので(x+150)m、時間=道のり÷速さなので
 太郎家〜公園公園〜花子家
速さ(m/分)8060
時間(分)x80x+15060
道のり(m)xx+150
時間の合計が27分を使って式をつくる。
出発してからの時間をx分とする。
96x-64x=800
【答】25分後
【解説】同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
この場合,兄と妹の歩いた道のりの差が800mになったときである。
道のり=速さ×時間なので
兄の歩いた道のり = 96x
妹の歩いた道のり=64x
これらの差が1周分なので
96x-64x=800
これを解くと
x=25
全男子数をx人とする
310x+210(460-x)=116
【答】240人
【解説】全男子数をx人とすると、全女子数は(460-x)人である。
自転車通学の男子は310x、女子は210(460-x)となる。
これらの合計が116となることから方程式をつくる。
原価をx円とする
810×1410x=x+180
【答】1500円
【解説】原価をx円とすると、原価の4割の利益を見込んだ定価は1410x円である。この定価の2割引きの売値は1410810 円となる。
売値 = 原価+利益から式をつくる。
【式】食塩水Aの濃度をx%とする。
 x+33=40
【答】7%
© 2006- 2022 SyuwaGakuin All Rights Reserved pc