答表示

中1 方程式の利用 演習

文章題 連続する整数 ≫連続する2つの奇数があり、その和は56である。この2つの奇数を求めよ。
小さい方の奇数をxとする。
x+(x+2)=56
【答】27,29
【解説】奇数は1,3,5,7・・・と2ずつ大きくなるので連続する2つの奇数はx, x+2と表せる。
文章題 2けたの自然数 ≫一の位の数が十の位の数の半分より2大きい2けたの自然数がある。この2けたの自然数の一の位と十の位を入れ替えた数をもとの自然数にたすと154になる。もとの2けたの自然数を求めよ。
十の位の数をxとする。
12x+2+10x+10(12x+2)+x=154
【答】86
【解説】一の位の数が十の位の数の半分より2大きいので、十の位の数をxとすると一の位の数は12x+2となる。2けたの自然数は12x+2+10x、一の位と十の位を入れ替えるとx+10(12x+2)となる。
文章題 過不足の問題 ≫クラス全員でお金を出し合って記念品を買う。一人200円ずつ集めると300円足りない、一人250円ずつ集めると950円あまる。記念品の値段を求めよ。
クラスの生徒数をx人とする。
200x+300=250x-950
【答】5300円
【解説】求めるのは記念品の値段だが、人数をxとしたほうが式をたてるのが容易になる。
一人200円ずつで300円足りないので、記念品の値段は200x+300となる。
また、一人250円ずつで650円あまるので、記念品の値段は250x-650となる。
2通りで表した値段を=(等号)で結ぶと 200x+300=250x-950 これを解くとx=25
求めるものは記念品の値段なのでx=25を200x+300に代入すると200×25+300=5300
文章題 平均点の問題 ≫男子16人、女子17人のクラスで身長を測ったらクラス全体の平均が158.3㎝でした。男子の平均は女子平均より3.3㎝高かった。男子の身長の平均は何㎝でしょうか。
男子の身長の平均をxcmとする。
16x+17(x-3.3)=158.3×33
【答】160cm
【解説】男子の平均点をx点とすると女子はそれより3.7点高いので(x+3.7)点である。
平均点×人数 = 合計点なので
男子女子クラス
人数172037
平均点xx+3.777
合計点17x20(x+3.7)77×37
男子の合計点+女子の合計点 = クラスの合計点 から方程式をつくる。
文章題 速さ 追いつく1 ≫太郎君が家を出発して毎分55mで歩いていった。太郎君が出発してから4分後に兄が毎分75mで追いかけた。兄が太郎君に追いつくのは、兄が家を出てから何分後か。
兄が家を出てからx分後に追いつくとする。
55(x+4)=75x
【答】11分後
【解説】兄が家を出てからの時間をx分とすると、兄は太郎くんの4分後に家を出ているので太郎くんの時間は兄より4分長い(x+4)分である。道のり=時間×速さなので
太郎
速さ(m/分)5575
時間(分)x+4x
道のり(m)55(x+4)75x
追いつくときは、道のりが同じなので
太郎の歩いた道のり = 兄の歩いた道のり で式をつくる。
文章題 速さ 往復 ≫A町からB町までを往復した。行きは毎分75mで、帰りは毎分50mの速さで歩いたら往復にかかった時間は40分だった。A町からB町までの道のりは何mか求めよ。
A町からB町までをx mとする。
x75+x50=40
【答】1200m
【解説】往復では行きと帰りの道のりの長さは同じなので両方xm, 時間 = 道のり÷速さなので
 行き帰り
速さ(m/分)7550
時間(分)x75x50
道のり(m)xx
合計時間が40分なので、行きの時間+帰りの時間 =40 となる。
文章題 速さが変わる問題 ≫家から駅まで2.1㎞ある。家を出てから途中までは毎分80mで歩き、残りは毎分65mで歩いた。 家を出てから30分で駅に着いた。速さを変えたのは家を出てから何分後か。
家を出てx分後に速さを変えたとする。
80x+65(30-x)=2100
【答】10分後
文章題 池の周り ≫湖の周りを1周する道がある。A君とB君がこの道を歩く。同じ地点から同時に出発して反対方向に回ると12分30秒後にはじめて出会い, 同じ方向に回ると43分45秒でA君がB君をはじめて追い越す。二人は常に一定の速さで歩くものとし, A君の速さはB君の速さより毎分32mだけ速い。このとき, A君とB君の速さはそれぞれ毎分何mか求めよ。
B君の速さを毎分xmとする。
252(x+32)+252x=1754(x+32)-1754x
【答】A君毎分72m, B君毎分40m
【解説】A君はB君より毎分32mだけ速いので,A君の速さは毎分(x+32)m
反対方向に回る場合,二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
12分30秒を分に直すと12+3060=252分なので
道のり=速さ×時間より
252(x+32)+252x=1周の道のり
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
43分45秒を分に直すと43+4560=1754分なので
1754(x+32)-1754x=1周のみちのり
252(x+32)+252xと1754(x+32)-1754xはともに1周の道のりを表すので=で結ぶと
252(x+32)+252x=1754(x+32)-1754x
これを解くとx=40これがB君の速さなのでA君の速さは40+32=72
文章題 割合 ≫姉と弟がアメを持っている。姉は弟に比べて16個多く持っていた。姉が弟に自分のアメの10%をあげたので二人のアメの数がちょうど同じになった。 アメは全部で何個あったか。
姉が持っていたアメをx個とする。
90100x=10100x+x-16
【答】144個
【解説】求めるものは全部のアメの数だが、割合10%のもとになる数が姉がはじめに持っていた数なのでそれをxにする。
姉がxだと,弟はそれより16個少ないので(x-16)個, 姉から10%減らして弟に10%増やす。
はじめのアメの数xx-16
アメの増減- 10100x+ 10100x
最終的なアメの数x- 10100 xx-16 + 10100x

最終的に姉と弟のアメの数が同じになったので =で結んで方程式にする。
文章題 割引・割増 ≫定価1500円の商品を定価の2割引で売ったが、まだ原価の2割の利益があった。この商品の原価を求めよ。
原価をx円とする
810×1500 =1210x
【答】1000円
文章題 濃度 ≫ 濃度のわからない食塩水Aと9%の食塩水Bがある。Aを550gとBを110g混ぜたら4%の食塩水になった。食塩水Aの濃度を求めよ。 【式】食塩水Aの濃度をx%とする。
  5.5x+9.9=26.4
【答】3%
解答 表示
小さい方の奇数をxとする。
x+(x+2)=56
【答】27,29
【解説】奇数は1,3,5,7・・・と2ずつ大きくなるので連続する2つの奇数はx, x+2と表せる。
十の位の数をxとする。
12x+2+10x+10(12x+2)+x=154
【答】86
【解説】一の位の数が十の位の数の半分より2大きいので、十の位の数をxとすると一の位の数は12x+2となる。2けたの自然数は12x+2+10x、一の位と十の位を入れ替えるとx+10(12x+2)となる。
クラスの生徒数をx人とする。
200x+300=250x-950
【答】5300円
【解説】求めるのは記念品の値段だが、人数をxとしたほうが式をたてるのが容易になる。
一人200円ずつで300円足りないので、記念品の値段は200x+300となる。
また、一人250円ずつで650円あまるので、記念品の値段は250x-650となる。
2通りで表した値段を=(等号)で結ぶと 200x+300=250x-950 これを解くとx=25
求めるものは記念品の値段なのでx=25を200x+300に代入すると200×25+300=5300
男子の身長の平均をxcmとする。
16x+17(x-3.3)=158.3×33
【答】160cm
【解説】男子の平均点をx点とすると女子はそれより3.7点高いので(x+3.7)点である。
平均点×人数 = 合計点なので
男子女子クラス
人数172037
平均点xx+3.777
合計点17x20(x+3.7)77×37
男子の合計点+女子の合計点 = クラスの合計点 から方程式をつくる。
兄が家を出てからx分後に追いつくとする。
55(x+4)=75x
【答】11分後
【解説】兄が家を出てからの時間をx分とすると、兄は太郎くんの4分後に家を出ているので太郎くんの時間は兄より4分長い(x+4)分である。道のり=時間×速さなので
太郎
速さ(m/分)5575
時間(分)x+4x
道のり(m)55(x+4)75x
追いつくときは、道のりが同じなので
太郎の歩いた道のり = 兄の歩いた道のり で式をつくる。
A町からB町までをx mとする。
x75+x50=40
【答】1200m
【解説】往復では行きと帰りの道のりの長さは同じなので両方xm, 時間 = 道のり÷速さなので
 行き帰り
速さ(m/分)7550
時間(分)x75x50
道のり(m)xx
合計時間が40分なので、行きの時間+帰りの時間 =40 となる。
家を出てx分後に速さを変えたとする。
80x+65(30-x)=2100
【答】10分後
B君の速さを毎分xmとする。
252(x+32)+252x=1754(x+32)-1754x
【答】A君毎分72m, B君毎分40m
【解説】A君はB君より毎分32mだけ速いので,A君の速さは毎分(x+32)m
反対方向に回る場合,二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
12分30秒を分に直すと12+3060=252分なので
道のり=速さ×時間より
252(x+32)+252x=1周の道のり
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
43分45秒を分に直すと43+4560=1754分なので
1754(x+32)-1754x=1周のみちのり
252(x+32)+252xと1754(x+32)-1754xはともに1周の道のりを表すので=で結ぶと
252(x+32)+252x=1754(x+32)-1754x
これを解くとx=40これがB君の速さなのでA君の速さは40+32=72
姉が持っていたアメをx個とする。
90100x=10100x+x-16
【答】144個
【解説】求めるものは全部のアメの数だが、割合10%のもとになる数が姉がはじめに持っていた数なのでそれをxにする。
姉がxだと,弟はそれより16個少ないので(x-16)個, 姉から10%減らして弟に10%増やす。
はじめのアメの数xx-16
アメの増減- 10100x+ 10100x
最終的なアメの数x- 10100 xx-16 + 10100x

最終的に姉と弟のアメの数が同じになったので =で結んで方程式にする。
原価をx円とする
810×1500 =1210x
【答】1000円
【式】食塩水Aの濃度をx%とする。
  5.5x+9.9=26.4
【答】3%
© 2006- 2022 SyuwaGakuin All Rights Reserved pc