答表示

中1 方程式の利用 演習

文章題 連続する整数 ≫連続する2つの整数があり、その和は25である。この2つの整数を求めよ。
小さい方の整数をxとする。
x+(x+1)=25
【答】12,13
【解説】整数は1ずつ大きくなるので、xの次はx+1である。よって連続する2つの自然数はxとx+1と表せる。
文章題 2けたの自然数 ≫一の位の数が十の位の数の2倍より1大きい2けたの自然数がある。この2けたの自然数の一の位と十の位を入れ替えた数をもとの自然数にたすと110になる。もとの2けたの自然数を求めよ。
十の位の数をxとする。
2x+1+10x+10(2x+1)+x=110
【答】37
【解説】一の位の数が十の位の数の2倍より1大きいので、十の位の数をxとすると一の位の数は2x+1である。2けたの自然数は2x+1+10x,一の位と十の位の数を入れ替えると10(2x+1)+xとなる。
文章題 過不足の問題 ≫クラス全員でお金を出し合って記念品を買う。一人300円ずつ集めると700円足りない、一人400円ずつ集めると2200円あまる。クラスの生徒数を求めよ。
クラスの人数をx人とする。
300x+700=400x-2200
【答】29人
【解説】
一人の費用300400
人数xx
集金額300x400x
過不足1200足りない1600あまる
全費用300x+700400x-2200

全費用は300x+1200と400x-2200の2通りで表せるのでこれらを=(等号)で結んで方程式にする。
文章題 平均点の問題 ≫32人のクラスがある。男子の平均点が60点、女子の平均点が68点で、クラス全体の平均点が64.5点だった。男子の人数を求めよ。
男子の人数をx人とする。
60x+68(32-x)=64.5×32
【答】14人
【解説】32人のクラスで、男子の人数がx人なら、女子の人数は(32-x)人と表せる。また、平均点×人数=合計点なので
男子女子クラス
人数x32-x32
平均点606864.5
合計点60x68(32-x)64.5×32
男子の合計点 + 女子の合計点 = クラスの合計点 から方程式をつくる
文章題 速さ 追いつく1 ≫花子さんが家をでて毎分45mで歩いていった。その10分後に母が毎分120mで花子さんを追いかけた。母が花子さんに追いつくのは花子さんが家を出てから何分後か。
花子さんが家を出てからの時間をx分とする。
45x=120(x-10)
【答】16分後 
【解説】花子さんが家を出てからの時間をx分とすると、母は10分後に家を出ているので、母の時間は花子さんより10分短い(x-10)分である。道のり=時間×速さなので
花子
速さ(m/分)45120
時間(分)xx-10
道のり(m)45x120(x-10)
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。
文章題 速さ 往復 ≫A地点とB地点の間を往復した。行きは毎分80m、帰りは毎分75mで歩いたら帰りのほうが4分多くかかった。AB間の道のりを求めよ。
AB間の道のりをxmとする。
x75-x80=4
【答】4800m
【解説】往復では行きと帰りの道のりが同じなので、両方x ,時間 =道のり÷速さなので
 行き帰り
速さ(m/分)8075
時間(分)x80x75
道のり(m)xx
帰りのほうが4分長いので 帰りの時間 – 行きの時間 =4 となる。
文章題 速さが変わる問題 ≫たかし君の家からよしこさんの家まで930mあり、途中に公園がある。ある日公園で待ち合わせて二人が同時に家を出た。たかし君は毎分75m、 よしこさんは毎分55mで歩いていったらよしこさんのほうが2分早く着いた。たかし君の家から公園までの道のりを求めよ。
たかしくんの家から公園までをxmとする。
x75=930-x55+2
【答】600m
文章題 池の周り ≫池の周りを1周する道がある。A君とB君がこの道を自転車で走る。同じ地点から同時に出発して反対方向に回ると9分後にはじめて出会い, 同じ方向に回ると50分でA君がB君をはじめて追い越す。二人は常に一定の速さで走るものとし, A君の速さが毎分236mのとき, B君の速さは毎分何mか求めよ。
B君の速さを毎分xmとする。
9×236+9x=50×236-50x
【答】毎分164m
【解説】反対方向に回る場合, 二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
道のり=速さ×時間より
9×236+9x=1周の道のり
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越すので
50×236-50x=1周のみちのり
9×236+9xと50×236-50xはともに1周の道のりを表すので = で結ぶと
9×236-9x=50×236-50x
これを解くとx=164
文章題 割合 ≫全校生徒710人のうち、自転車通学の割合は男子が全男子数の15%で、女子は全女子数の8%である。 自転車通学の人数は男子のほうが女子より26人多い。この学校の全男子数を求めよ。
全男子数をx人とする
15100x-8100(710-x)=26
【答】360人
【解説】全男子数をx人とすると、全女子数は(710-x)人となる。
自転車通学の男子は15100x、女子は8100(710-x)となる。
自転車通学の人数は男子が女子より26人多いので、「自転車通学の男子」-「自転車通学の女子」=26で方程式をつくる。
文章題 割引・割増 ≫ある品物を仕入れて、原価の6割の利益を見込んで定価をつけた。定価では売れなかったので240円引きで売った。品物1個につき原価の4割の利益になった。原価を求めよ。
原価をx円とする
1610x-240=1410x
【答】1200円
【解説】原価をx円とすると原価の6割の利益を見込んでつけた定価は1610x円である。そこから240円引きで売った売値は(1610x-240)円となる。
また、原価の4割の利益になったとの記述から売値は 1410xとも表せる。2通りであらわした売値を=で結んで式をつくる。
文章題 濃度 ≫ 濃度のわからない食塩水Aと11%の食塩水Bがある。Aを100gとBを300g混ぜたら10%の食塩水になった。食塩水Aの濃度を求めよ。 【式】食塩水Aの濃度をx%とする。
 x+33=40
【答】7%
解答 表示
小さい方の整数をxとする。
x+(x+1)=25
【答】12,13
【解説】整数は1ずつ大きくなるので、xの次はx+1である。よって連続する2つの自然数はxとx+1と表せる。
十の位の数をxとする。
2x+1+10x+10(2x+1)+x=110
【答】37
【解説】一の位の数が十の位の数の2倍より1大きいので、十の位の数をxとすると一の位の数は2x+1である。2けたの自然数は2x+1+10x,一の位と十の位の数を入れ替えると10(2x+1)+xとなる。
クラスの人数をx人とする。
300x+700=400x-2200
【答】29人
【解説】
一人の費用300400
人数xx
集金額300x400x
過不足1200足りない1600あまる
全費用300x+700400x-2200

全費用は300x+1200と400x-2200の2通りで表せるのでこれらを=(等号)で結んで方程式にする。
男子の人数をx人とする。
60x+68(32-x)=64.5×32
【答】14人
【解説】32人のクラスで、男子の人数がx人なら、女子の人数は(32-x)人と表せる。また、平均点×人数=合計点なので
男子女子クラス
人数x32-x32
平均点606864.5
合計点60x68(32-x)64.5×32
男子の合計点 + 女子の合計点 = クラスの合計点 から方程式をつくる
花子さんが家を出てからの時間をx分とする。
45x=120(x-10)
【答】16分後 
【解説】花子さんが家を出てからの時間をx分とすると、母は10分後に家を出ているので、母の時間は花子さんより10分短い(x-10)分である。道のり=時間×速さなので
花子
速さ(m/分)45120
時間(分)xx-10
道のり(m)45x120(x-10)
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。
AB間の道のりをxmとする。
x75-x80=4
【答】4800m
【解説】往復では行きと帰りの道のりが同じなので、両方x ,時間 =道のり÷速さなので
 行き帰り
速さ(m/分)8075
時間(分)x80x75
道のり(m)xx
帰りのほうが4分長いので 帰りの時間 – 行きの時間 =4 となる。
たかしくんの家から公園までをxmとする。
x75=930-x55+2
【答】600m
B君の速さを毎分xmとする。
9×236+9x=50×236-50x
【答】毎分164m
【解説】反対方向に回る場合, 二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
道のり=速さ×時間より
9×236+9x=1周の道のり
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越すので
50×236-50x=1周のみちのり
9×236+9xと50×236-50xはともに1周の道のりを表すので = で結ぶと
9×236-9x=50×236-50x
これを解くとx=164
全男子数をx人とする
15100x-8100(710-x)=26
【答】360人
【解説】全男子数をx人とすると、全女子数は(710-x)人となる。
自転車通学の男子は15100x、女子は8100(710-x)となる。
自転車通学の人数は男子が女子より26人多いので、「自転車通学の男子」-「自転車通学の女子」=26で方程式をつくる。
原価をx円とする
1610x-240=1410x
【答】1200円
【解説】原価をx円とすると原価の6割の利益を見込んでつけた定価は1610x円である。そこから240円引きで売った売値は(1610x-240)円となる。
また、原価の4割の利益になったとの記述から売値は 1410xとも表せる。2通りであらわした売値を=で結んで式をつくる。
【式】食塩水Aの濃度をx%とする。
 x+33=40
【答】7%
© 2006- 2022 SyuwaGakuin All Rights Reserved pc