小さい方の整数をxとする。
x+(x+1)=25
【答】12,13
【解説】整数は1ずつ大きくなるので、xの次はx+1である。よって連続する2つの自然数はxとx+1と表せる。
一の位の数をxとする。
x+10(12-x)+18=10x+12-x
【答】57
【解説】一の位と十の位の和が12なので、一の位がxなら十の位は(12-x)である。
2けたの自然数はx + 10(12-x)となり、一の位と十の位を入れ替えると10x + (12-x)となる。
生徒の人数をx人とする。
600x+1500=800x-3100
【答】23人
【解説】※(アメなど)「配る」ときと、この問題のように「集める」ときで「あまる」「足りない」の表し方が逆になることに注意。
600円ずつあつめて1500円足りないので、集めた600xにさらに1500円足して目標金額に達する。つまり目標金額は600x+1500である。
また、800円ずつ集めて3100円余るので、800xから余った分を引くと目標額になる。つまり800x-3100が目標金額である。
600x+1500と800x-3100はともに目標金額を表しているので=(等号)で結んで方程式となる。
男子の人数をx人とする。
65x+76(x-10)=70(2x-10)
【答】60人
【解説】女子より男子が2人多いので、男子がx人なら、女子は(x-2)人、クラスは(x+x-2)人である。| | 男子 | 女子 | クラス |
| 人数 | x | x-2 | 2x-2 |
| 平均点 | 65 | 73.5 | 69 |
| 合計点 | 65x | 73.5(x-2) | 69(2x-2) |
男子の合計点 + 女子の合計点 = クラスの合計点から式をつくる。 花子さんが家を出てからの時間をx分とする。
75x=100(x-6)
【答】24分後
【解説】花子さんが家を出てからの時間をx分とすると、母は6分後に家を出ているので、母の時間は花子さんより6分短い(x-6)分である。道のり=時間×速さなので| | 花子 | 母 |
| 速さ(m/分) | 75 | 100 |
| 時間(分) | x | x-6 |
| 道のり(m) | 75x | 100(x-6) |
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。 行きにかかった時間をx分とする。
4×x60=3×x+1360
【答】39分
【解説】行きの時間をx分とすると帰りの時間は(x+13)分、速さが毎時kmで表されているので分を時間に直すと, x分はx60時間, (x+13)分は x+1360 時間である。道のり =時間×速さなので| | 行き | 帰り |
| 速さ(km/時) | 4 | 3 |
| 時間(時間) | x60 | x+1360 |
| 道のり(km) | 4×x60 | 3×x+1360 |
往復は行きと帰りの道のりが同じなので 行きの道のり=帰りの道のり で式をつくる。 家から公園までの速さを毎分xmとする。
15x+10(x-20)=1800
【答】毎分80m
【解説】速さを20m/分遅くしたので、家から公園の速さをxm/分とすると公園から駅は(x-20)m/分である。道のり=時間×速さなので| | 家〜公園 | 公園〜駅 |
| 速さ(m/分) | x | x-20 |
| 時間(分) | 15 | 10 |
| 道のり(m) | 15x | 10(x-20) |
道のりの合計が1800mを使って式をたてる。 B君の速さを毎分xmとする。
252(x+32)+252x=1754(x+32)-1754x
【答】A君毎分72m, B君毎分40m
【解説】A君はB君より毎分32mだけ速いので,A君の速さは毎分(x+32)m
反対方向に回る場合,二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
12分30秒を分に直すと12+3060=252分なので
道のり=速さ×時間より
252(x+32)+252x=1周の道のり
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
43分45秒を分に直すと43+4560=1754分なので
1754(x+32)-1754x=1周のみちのり
252(x+32)+252xと1754(x+32)-1754xはともに1周の道のりを表すので=で結ぶと
252(x+32)+252x=1754(x+32)-1754x
これを解くとx=40これがB君の速さなのでA君の速さは40+32=72
姉が持っていたアメをx個とする。
85100x=15100x+x-12
【答】68個
【解説】求めるものは全部のアメの数だが、割合15%のもとになる数が姉がはじめに持っていた数なのでそれをxにする。
| | 姉 | 弟 |
| はじめ | x | x-12 |
| 移動 | - 15100x | + 15100x |
| あと | x- 15100 x | x-12 + 15100x |
原価をx円とする
610×1710x=x+10
【答】500円
【解説】原価をx円とすると、原価の7割の利益を見込んだ定価は1710x円である。この定価の4割引きの売値は1710x× 610 円となる。
売値 = 原価+利益 から式をつくる。
原価をx円とする
610×1710x=x+10
【答】500円
【解説】原価をx円とすると、原価の7割の利益を見込んだ定価は1710x円である。この定価の4割引きの売値は1710x× 610 円となる。
売値 = 原価+利益 から式をつくる。