小さい方の整数をxとする。
x+(x+1)=31
【答】15,16
【解説】整数は1ずつ大きくなるので、xの次はx+1である。よって連続する2つの自然数はxとx+1と表せる。
十の位の数をxとする。
20x+x-(2x+10x)=27
【答】36
【解説】一の位が十の位の2倍なので十の位の数をxとすると一の位は2xとなる。すると2けたの自然数は2x+10x、一の位と十の位を入れ替えた数は20x+xとなる。
長いすの数をx脚とする。
5x+13=6(x-7)+1
【答】54脚
【解説】長いすの全数をxとすると5人ずつ座ると5x人座れるが、13人が座れないので生徒数は(5x+13)と表せる。
6人ずつ座ると全く座らない長いす6脚と1人だけのいすが1脚できたので、6人座る長いすの数は(x-7)である。よって6(x-7)+1が生徒数となる。2通りで表した生徒数を=で結んで方程式とする。
女子の人数をx人とする。
134.1x+160(37-x)=146×37
【答】20人
【解説】32人のクラスで、男子の人数がx人なら、女子の人数は(32-x)人と表せる。また、平均点×人数=合計点なので| | 男子 | 女子 | クラス |
| 人数 | x | 32-x | 32 |
| 平均点 | 60 | 68 | 64.5 |
| 合計点 | 60x | 68(32-x) | 64.5×32 |
男子の合計点 + 女子の合計点 = クラスの合計点 から方程式をつくる 花子さんが家を出てからの時間をx分とする。
75x=100(x-6)
【答】24分後
【解説】花子さんが家を出てからの時間をx分とすると、母は6分後に家を出ているので、母の時間は花子さんより6分短い(x-6)分である。道のり=時間×速さなので| | 花子 | 母 |
| 速さ(m/分) | 75 | 100 |
| 時間(分) | x | x-6 |
| 道のり(m) | 75x | 100(x-6) |
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。 行きの速さを毎時xkmとする。
2x=15060(x-10)
【答】毎時50km
【解説】帰りは行きより毎時10km遅いので、行きの速さをxkm/時とすると帰りは(x-10)km/時となる。2時間30分を時間に直すと15060時間, 道のり=時間×速さなので| | 行き | 帰り |
| 速さ(km/時) | x | x-10 |
| 時間(時間) | 2 | 15060 |
| 道のり(km) | 2x | 15060(x-10) |
往復は行きと帰りの道のりが同じなので 行きの道のり = 帰りの道のりで式ができる。
自転車の速さを毎分xmとする。
7x+5(x-100)=1600
【答】毎分175m
B君の速さを毎分xmとする。
15(x+80)+15x=60(x+80)-60x
【答】A君毎分200m, B君毎分120m
【解説】A君はB君より毎分80mだけ速いので,A君の速さは 毎分(x+80)m
反対方向に回る場合, 二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
道のり=速さ×時間より
15(x+80)+15x=1周の道のり
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越すので
60(x+80)-60x=1周のみちのり
15(x+80)+15xと60(x+80)-60xはともに1周の道のりを表すので = で結ぶと
15(x+80)+15x=60(x+80)-60xは
これを解くとx=120これがB君の速さなので A君の速さは 120+80=200
男子の人数をx人とする
x+90100x=323
【答】170人
原価をx円とする
148100x-900=112100x
【答】2500円
【解説】原価をx円とすると原価の48%の利益を見込んでつけた定価は148100x円である。そこから900円引きで売った売値は(148100x-900)円となる。
また、原価の12%の利益になったとの記述から売値は 112100xとも表せる。2通りであらわした売値を=で結んで式をつくる。
【式】6%の食塩水をxg混ぜるとする。
2+6100x+10100(400-x)=30
【答】6%が300g, 10%が100g