答表示

中1 方程式の利用 演習

文章題 連続する整数 ≫連続する2つの整数があり、その和は25である。この2つの整数を求めよ。
小さい方の整数をxとする。
x+(x+1)=25
【答】12,13
【解説】整数は1ずつ大きくなるので、xの次はx+1である。よって連続する2つの自然数はxとx+1と表せる。
文章題 2けたの自然数 ≫一の位の数と十の位の数との和が12となる2けたの自然数がある。この自然数の十の位と一の位の数を入れ替えた数はもとの数より18大きくなる。もとの2けたの自然数を求めよ。
一の位の数をxとする。
x+10(12-x)+18=10x+12-x
【答】57
【解説】一の位と十の位の和が12なので、一の位がxなら十の位は(12-x)である。
2けたの自然数はx + 10(12-x)となり、一の位と十の位を入れ替えると10x + (12-x)となる。
文章題 過不足の問題 ≫長いすがいくつかある。一つの長いすに4人ずつ座ると座れない生徒が9人いた。そこで一つの長いすに5人ずつ座ると一つだけ2人しか座らない長いすができた。長いすの数を求めなさい。
長いすの数をx脚とする。
4x+9=5(x-1)+2
【答】12脚
【解説】全長いす数をxとすると4人ずつ座ると4x人座れるが、9人が座れないので生徒数は(4x+9)と表せる。
5人ずつ座ると1つの長いすだけ2人がけになるので、5人座る長いすの数は(x-1)である。よって5(x-1)+2が生徒数となる。2通りで表した生徒数を=で結んで方程式とする。
文章題 平均点の問題 ≫ある学校の1年生は女子より男子のほうが10人多い。1年生全体の平均点が70点、男子の平均点が65点、女子の平均点が76点だった。男子の人数を求めよ。
男子の人数をx人とする。
65x+76(x-10)=70(2x-10)
【答】60人
【解説】女子より男子が2人多いので、男子がx人なら、女子は(x-2)人、クラスは(x+x-2)人である。
男子女子クラス
人数xx-22x-2
平均点6573.569
合計点65x73.5(x-2)69(2x-2)
男子の合計点 + 女子の合計点 = クラスの合計点から式をつくる。
文章題 速さ 追いつく1 ≫花子さんが家をでて毎分45mで歩いていった。その10分後に母が毎分120mで花子さんを追いかけた。母が花子さんに追いつくのは花子さんが家を出てから何分後か。
花子さんが家を出てからの時間をx分とする。
45x=120(x-10)
【答】16分後 
【解説】花子さんが家を出てからの時間をx分とすると、母は10分後に家を出ているので、母の時間は花子さんより10分短い(x-10)分である。道のり=時間×速さなので
花子
速さ(m/分)45120
時間(分)xx-10
道のり(m)45x120(x-10)
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。
文章題 速さ 往復 ≫A町とB町を往復した。行きは毎分70m、帰りは毎分60mで歩くと、歩いていた時間は帰りのほうが8分長かった。行きにかかった時間は何分か。
行きにかかった時間をx分とする。
70x=60(x+8)
【答】48分
【解説】行きの時間をx分とすると帰りの時間は(x+8)分、道のり =時間×速さなので
 行き帰り
速さ(m/分)7060
時間(分)xx+8
道のり(m)70x60(x+8)
往復は行きと帰りの道のりが同じなので 行きの道のり=帰りの道のり で式をつくる。
文章題 速さが変わる問題 ≫A町からB町までは時速4㎞で歩き、B町からC町までは時速3.5㎞で歩いたら、合計で7時間42分かかった。B町からC町までの道のりはA町からB町までの道のり0.7km遠い。A町からB町までの道のりは何kmか。
A町からB町までの道のりをxkmとする。
x4+x+0.73.5=46260
【答】14km
文章題 池の周り ≫池の周りに1周2000mの道がある。姉と弟が同時に同じ場所から出発して同じ方向に歩く。姉は時速3.6km, 弟は時速2.4kmの場合、はじめて姉が弟を追い越すのは出発から何分後か。
出発してからの時間をx分とする。
60x-40x=2000
【答】100分後
【解説】求める時間を分にすると,速さの単位を時速kmから分速mに直す必要がある。時速3.6kmは3.6×1000÷60=60 分速60m,時速2.4kmは2.4×1000÷60=40 分速40m
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
この場合,姉と弟の歩いた道のりの差が2000mになったときである。
道のり=速さ×時間なので
姉の歩いた道のり =60x
弟の歩いた道のり= 40x
これらの差が1周分なので
60x-40x=2000
これを解くと
x=100
文章題 割合 ≫はじめ姉がいくつかのアメを持っていた。妹は持っていなかったので、姉は自分の持っていたアメの70%を妹にあげた。 姉は残ったアメのうち5個を食べ、妹がもらったアメの75%を食べると姉と妹の持っているアメの数が同じになった。 姉がはじめに持っていたアメの数を求めよ。
はじめに姉が持っていたアメの数をx個とする。
30100x-5=25100×70100x
【答】40個
【解説】姉の持っていたアメをxとすると、妹にその70%をあげたので、自分には30%が残る。そこから姉は5個食べたので-5,妹は75%食べたので ×25100 はじめx0移動後30100x70100x食後30100x-525100×70100x
食べた後の2人のアメの数が同じなので=で結んで式を作る。
文章題 割引・割増 ≫ある品物を仕入れて、原価の4割の利益を見込んで定価をつけた。定価では全く売れなかったので定価の2割引きで売った。品物1個につき180円の利益になった。原価を求めよ。
原価をx円とする
810×1410x=x+180
【答】1500円
【解説】原価をx円とすると、原価の4割の利益を見込んだ定価は1410x円である。この定価の2割引きの売値は1410810 円となる。
売値 = 原価+利益から式をつくる。
文章題 濃度 ≫ 濃度のわからない食塩水Aと9%の食塩水Bがある。Aを550gとBを110g混ぜたら4%の食塩水になった。食塩水Aの濃度を求めよ。 【式】食塩水Aの濃度をx%とする。
  5.5x+9.9=26.4
【答】3%
解答 表示
小さい方の整数をxとする。
x+(x+1)=25
【答】12,13
【解説】整数は1ずつ大きくなるので、xの次はx+1である。よって連続する2つの自然数はxとx+1と表せる。
一の位の数をxとする。
x+10(12-x)+18=10x+12-x
【答】57
【解説】一の位と十の位の和が12なので、一の位がxなら十の位は(12-x)である。
2けたの自然数はx + 10(12-x)となり、一の位と十の位を入れ替えると10x + (12-x)となる。
長いすの数をx脚とする。
4x+9=5(x-1)+2
【答】12脚
【解説】全長いす数をxとすると4人ずつ座ると4x人座れるが、9人が座れないので生徒数は(4x+9)と表せる。
5人ずつ座ると1つの長いすだけ2人がけになるので、5人座る長いすの数は(x-1)である。よって5(x-1)+2が生徒数となる。2通りで表した生徒数を=で結んで方程式とする。
男子の人数をx人とする。
65x+76(x-10)=70(2x-10)
【答】60人
【解説】女子より男子が2人多いので、男子がx人なら、女子は(x-2)人、クラスは(x+x-2)人である。
男子女子クラス
人数xx-22x-2
平均点6573.569
合計点65x73.5(x-2)69(2x-2)
男子の合計点 + 女子の合計点 = クラスの合計点から式をつくる。
花子さんが家を出てからの時間をx分とする。
45x=120(x-10)
【答】16分後 
【解説】花子さんが家を出てからの時間をx分とすると、母は10分後に家を出ているので、母の時間は花子さんより10分短い(x-10)分である。道のり=時間×速さなので
花子
速さ(m/分)45120
時間(分)xx-10
道のり(m)45x120(x-10)
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。
行きにかかった時間をx分とする。
70x=60(x+8)
【答】48分
【解説】行きの時間をx分とすると帰りの時間は(x+8)分、道のり =時間×速さなので
 行き帰り
速さ(m/分)7060
時間(分)xx+8
道のり(m)70x60(x+8)
往復は行きと帰りの道のりが同じなので 行きの道のり=帰りの道のり で式をつくる。
A町からB町までの道のりをxkmとする。
x4+x+0.73.5=46260
【答】14km
出発してからの時間をx分とする。
60x-40x=2000
【答】100分後
【解説】求める時間を分にすると,速さの単位を時速kmから分速mに直す必要がある。時速3.6kmは3.6×1000÷60=60 分速60m,時速2.4kmは2.4×1000÷60=40 分速40m
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
この場合,姉と弟の歩いた道のりの差が2000mになったときである。
道のり=速さ×時間なので
姉の歩いた道のり =60x
弟の歩いた道のり= 40x
これらの差が1周分なので
60x-40x=2000
これを解くと
x=100
はじめに姉が持っていたアメの数をx個とする。
30100x-5=25100×70100x
【答】40個
【解説】姉の持っていたアメをxとすると、妹にその70%をあげたので、自分には30%が残る。そこから姉は5個食べたので-5,妹は75%食べたので ×25100 はじめx0移動後30100x70100x食後30100x-525100×70100x
食べた後の2人のアメの数が同じなので=で結んで式を作る。
原価をx円とする
810×1410x=x+180
【答】1500円
【解説】原価をx円とすると、原価の4割の利益を見込んだ定価は1410x円である。この定価の2割引きの売値は1410810 円となる。
売値 = 原価+利益から式をつくる。
【式】食塩水Aの濃度をx%とする。
  5.5x+9.9=26.4
【答】3%
© 2006- 2022 SyuwaGakuin All Rights Reserved pc