小さい方の奇数をxとする。
x+(x+2)=140
【答】69,71
【解説】奇数は1,3,5,7・・・と2ずつ大きくなるので連続する2つの奇数はx, x+2と表せる。
一の位の数をxとする。
x+10(x-4)+10x+x-4=110
【答】37
【解説】一の位が十の位より4大きいので、一の位がxなら十の位は(x-4)である。
2けたの自然数はx + 10(x-4)となり、一の位と十の位を入れ替えると10x + (x-4)となる。
子供の人数をx人とする
6x+8=7x-10
【答】18人
【解説】子供の数をxとして、折り紙の全枚数を2通りで表す。一人の 枚数 | 6 | 7 |
人数 | x | x |
配る数 | 6x | 7x |
過不足 | +8 | -10 |
折り紙の 全枚数 | 6x+8 | 7x-10 |
4枚ずつ配って8枚あまっているので、折り紙の全枚数を表すと4x+8、5枚配ろうとして10枚足りないので、5x-10が全枚数である。折り紙の全枚数は同じものを表しているので=(等号)でつなげば方程式になる。 男子の人数をx人とする。
63x+70(35-x)=66.4×35
【答】18人
【解説】32人のクラスで、男子の人数がx人なら、女子の人数は(32-x)人と表せる。また、平均点×人数=合計点なので | 男子 | 女子 | クラス |
人数 | x | 32-x | 32 |
平均点 | 60 | 68 | 64.5 |
合計点 | 60x | 68(32-x) | 64.5×32 |
男子の合計点 + 女子の合計点 = クラスの合計点 から方程式をつくる 兄が家を出てからx分後に追いつくとする。
55(x+4)=75x
【答】11分後
【解説】兄が家を出てからの時間をx分とすると、兄は太郎くんの4分後に家を出ているので太郎くんの時間は兄より4分長い(x+4)分である。道のり=時間×速さなので | 太郎 | 兄 |
速さ(m/分) | 55 | 75 |
時間(分) | x+4 | x |
道のり(m) | 55(x+4) | 75x |
追いつくときは、道のりが同じなので
太郎の歩いた道のり = 兄の歩いた道のり で式をつくる。
行きにかかった時間をx分とする。
4×x60=3×x+1360
【答】39分
【解説】行きの時間をx分とすると帰りの時間は(x+13)分、速さが毎時kmで表されているので分を時間に直すと, x分はx60時間, (x+13)分は x+1360 時間である。道のり =時間×速さなので | 行き | 帰り |
速さ(km/時) | 4 | 3 |
時間(時間) | x60 | x+1360 |
道のり(km) | 4×x60 | 3×x+1360 |
往復は行きと帰りの道のりが同じなので 行きの道のり=帰りの道のり で式をつくる。 家を出てx分後に速さを変えたとする。
80x+65(30-x)=2100
【答】10分後
出発してからの時間をx時間とする。
12x+8x=40
【答】2時間後
【解説】反対方向に回る場合, 二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
道のり=速さ×時間なので
兄の走った道のり = 12x
弟の走った道のり = 8x
これらの和が1周の道のりに等しいので
12x+8x=40
これを解くとx=2
はじめに姉が持っていたアメの数をx個とする。
410×610x=410x-4
【答】25個
【解説】姉の持っていたアメをxとすると、妹にその4割をあげたので、自分には6割が残る。 姉妹はじめx0移動後610x410x食後410×610x410x-4
食べた後の2人のアメの数が同じなので=で結んで式を作る。
原価をx円とする
1410x-200=115100x
【答】800円
【解説】原価をx円とすると原価の4割の利益を見込んでつけた定価は1410x円である。そこから200円引きで売った売値は(1410x-200)円となる。
また、原価の15%の利益になったとの記述から売値は 115100xとも表せる。2通りであらわした売値を=で結んで式をつくる。
原価をx円とする
1810x-250=x+70
【答】400円
【解説】原価をx円とすると、原価の8割の利益を見込んでつけた定価は1810x円である。
売値はここか250円引いたものなので、(1810x-250)円となる。
売値 = 原価+利益から式をつくる