答表示

中1 方程式の利用 演習

文章題 連続する整数 ≫連続する2つの整数があり、その和は31である。この2つの整数を求めよ。
小さい方の整数をxとする。
x+(x+1)=31
【答】15,16
【解説】整数は1ずつ大きくなるので、xの次はx+1である。よって連続する2つの自然数はxとx+1と表せる。
文章題 2けたの自然数 ≫一の位の数が十の位の数のちょうど2倍になるような2けたの自然数がある。この2けたの自然数の一の位と十の位の数を入れ替えた数はもとの自然数より27大きくなる。もとの2けたの自然数を求めよ。
十の位の数をxとする。
20x+x-(2x+10x)=27
【答】36
【解説】一の位が十の位の2倍なので十の位の数をxとすると一の位は2xとなる。すると2けたの自然数は2x+10x、一の位と十の位を入れ替えた数は20x+xとなる。
文章題 過不足の問題 ≫長いすがいくつかある。生徒全員が長いす1脚に5人ずつかけることにしたら、13人の生徒がかけられなかった。そこで、1脚に6人ずつかけたら、生徒が全く座らない長いす6脚と、1人しか座らない長いすが1脚できた。長いすの数を求めよ。
長いすの数をx脚とする。
5x+13=6(x-7)+1
【答】54脚
【解説】長いすの全数をxとすると5人ずつ座ると5x人座れるが、13人が座れないので生徒数は(5x+13)と表せる。
6人ずつ座ると全く座らない長いす6脚と1人だけのいすが1脚できたので、6人座る長いすの数は(x-7)である。よって6(x-7)+1が生徒数となる。2通りで表した生徒数を=で結んで方程式とする。
文章題 平均点の問題 ≫37人のクラスで女子の平均身長が134.1㎝、男子の平均身長が160㎝、クラス全体の平均身長が146㎝でした。女子の人数を求めよ。
女子の人数をx人とする。
134.1x+160(37-x)=146×37
【答】20人
【解説】32人のクラスで、男子の人数がx人なら、女子の人数は(32-x)人と表せる。また、平均点×人数=合計点なので
男子女子クラス
人数x32-x32
平均点606864.5
合計点60x68(32-x)64.5×32
男子の合計点 + 女子の合計点 = クラスの合計点 から方程式をつくる
文章題 速さ 追いつく1 ≫花子さんが家をでて毎分75mで歩いていった。その6分後に母が毎分100mで花子さんを追いかけた。母が花子さんに追いつくのは花子さんが家を出てから何分後か。
花子さんが家を出てからの時間をx分とする。
75x=100(x-6)
【答】24分後 
【解説】花子さんが家を出てからの時間をx分とすると、母は6分後に家を出ているので、母の時間は花子さんより6分短い(x-6)分である。道のり=時間×速さなので
花子
速さ(m/分)75100
時間(分)xx-6
道のり(m)75x100(x-6)
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。
文章題 速さ 往復 ≫2地点A、Bを往復する。行きは2時間かかり、帰りは行きの速さより毎時10kmだけおそくしたので2時間30分かかった。行きの速さは毎時何kmか。
行きの速さを毎時xkmとする。
2x=15060(x-10)
【答】毎時50km
【解説】帰りは行きより毎時10km遅いので、行きの速さをxkm/時とすると帰りは(x-10)km/時となる。2時間30分を時間に直すと15060時間, 道のり=時間×速さなので
 行き帰り
速さ(km/時)xx-10
時間(時間)215060
道のり(km)2x15060(x-10)
往復は行きと帰りの道のりが同じなので 行きの道のり = 帰りの道のりで式ができる。
文章題 速さが変わる問題 ≫A君が家から1600m離れた駅まで行った。自転車で7分走ったところでパンクしたため、そこから5分歩いて駅まで行った。自転車の速さは毎分何mか。ただし、自転車の速さは歩く速さより毎分100m速いとする。
自転車の速さを毎分xmとする。
7x+5(x-100)=1600
【答】毎分175m
文章題 池の周り ≫湖の周りを1周する道がある。A君とB君がこの道を自転車で走る。同じ地点から同時に出発して反対方向に回ると15分後にはじめて出会い, 同じ方向に回ると60分でA君がB君をはじめて追い越す。二人は常に一定の速さで走るものとし, A君の速さはB君の速さより毎分80mだけ速い。このとき, A君とB君の速さはそれぞれ毎分何mか求めよ。
B君の速さを毎分xmとする。
15(x+80)+15x=60(x+80)-60x
【答】A君毎分200m, B君毎分120m
【解説】A君はB君より毎分80mだけ速いので,A君の速さは 毎分(x+80)m
反対方向に回る場合, 二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
道のり=速さ×時間より
15(x+80)+15x=1周の道のり
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越すので
60(x+80)-60x=1周のみちのり
15(x+80)+15xと60(x+80)-60xはともに1周の道のりを表すので = で結ぶと
15(x+80)+15x=60(x+80)-60xは
これを解くとx=120これがB君の速さなので A君の速さは 120+80=200
文章題 割合 ≫ある中学校の全生徒数は323人である。女子の人数が男子の人数の90%のとき、この中学校の男子の人数を求めよ。
男子の人数をx人とする
x+90100x=323
【答】170人
文章題 割引・割増 ≫ある品物を仕入れて、原価の48%の利益を見込んで定価をつけた。定価では売れなかったので900円引きで売った。品物1個につき原価の12%の利益になった。原価を求めよ。
原価をx円とする
148100x-900=112100x
【答】2500円
【解説】原価をx円とすると原価の48%の利益を見込んでつけた定価は148100x円である。そこから900円引きで売った売値は(148100x-900)円となる。
また、原価の12%の利益になったとの記述から売値は 112100xとも表せる。2通りであらわした売値を=で結んで式をつくる。
文章題 濃度 ≫ 1%の食塩水が200gある。これに6%の食塩水と10%の食塩水を混ぜた結果, 5%の食塩水が600gできた。6%の食塩水と10%の食塩水はそれぞれ何gずつ混ぜたのか求めよ。 【式】6%の食塩水をxg混ぜるとする。
 2+6100x+10100(400-x)=30
【答】6%が300g, 10%が100g
解答 表示
小さい方の整数をxとする。
x+(x+1)=31
【答】15,16
【解説】整数は1ずつ大きくなるので、xの次はx+1である。よって連続する2つの自然数はxとx+1と表せる。
十の位の数をxとする。
20x+x-(2x+10x)=27
【答】36
【解説】一の位が十の位の2倍なので十の位の数をxとすると一の位は2xとなる。すると2けたの自然数は2x+10x、一の位と十の位を入れ替えた数は20x+xとなる。
長いすの数をx脚とする。
5x+13=6(x-7)+1
【答】54脚
【解説】長いすの全数をxとすると5人ずつ座ると5x人座れるが、13人が座れないので生徒数は(5x+13)と表せる。
6人ずつ座ると全く座らない長いす6脚と1人だけのいすが1脚できたので、6人座る長いすの数は(x-7)である。よって6(x-7)+1が生徒数となる。2通りで表した生徒数を=で結んで方程式とする。
女子の人数をx人とする。
134.1x+160(37-x)=146×37
【答】20人
【解説】32人のクラスで、男子の人数がx人なら、女子の人数は(32-x)人と表せる。また、平均点×人数=合計点なので
男子女子クラス
人数x32-x32
平均点606864.5
合計点60x68(32-x)64.5×32
男子の合計点 + 女子の合計点 = クラスの合計点 から方程式をつくる
花子さんが家を出てからの時間をx分とする。
75x=100(x-6)
【答】24分後 
【解説】花子さんが家を出てからの時間をx分とすると、母は6分後に家を出ているので、母の時間は花子さんより6分短い(x-6)分である。道のり=時間×速さなので
花子
速さ(m/分)75100
時間(分)xx-6
道のり(m)75x100(x-6)
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。
行きの速さを毎時xkmとする。
2x=15060(x-10)
【答】毎時50km
【解説】帰りは行きより毎時10km遅いので、行きの速さをxkm/時とすると帰りは(x-10)km/時となる。2時間30分を時間に直すと15060時間, 道のり=時間×速さなので
 行き帰り
速さ(km/時)xx-10
時間(時間)215060
道のり(km)2x15060(x-10)
往復は行きと帰りの道のりが同じなので 行きの道のり = 帰りの道のりで式ができる。
自転車の速さを毎分xmとする。
7x+5(x-100)=1600
【答】毎分175m
B君の速さを毎分xmとする。
15(x+80)+15x=60(x+80)-60x
【答】A君毎分200m, B君毎分120m
【解説】A君はB君より毎分80mだけ速いので,A君の速さは 毎分(x+80)m
反対方向に回る場合, 二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
道のり=速さ×時間より
15(x+80)+15x=1周の道のり
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越すので
60(x+80)-60x=1周のみちのり
15(x+80)+15xと60(x+80)-60xはともに1周の道のりを表すので = で結ぶと
15(x+80)+15x=60(x+80)-60xは
これを解くとx=120これがB君の速さなので A君の速さは 120+80=200
男子の人数をx人とする
x+90100x=323
【答】170人
原価をx円とする
148100x-900=112100x
【答】2500円
【解説】原価をx円とすると原価の48%の利益を見込んでつけた定価は148100x円である。そこから900円引きで売った売値は(148100x-900)円となる。
また、原価の12%の利益になったとの記述から売値は 112100xとも表せる。2通りであらわした売値を=で結んで式をつくる。
【式】6%の食塩水をxg混ぜるとする。
 2+6100x+10100(400-x)=30
【答】6%が300g, 10%が100g
© 2006- 2022 SyuwaGakuin All Rights Reserved pc