小さい方の整数をxとする。
x+(x+1)=25
【答】12,13
【解説】整数は1ずつ大きくなるので、xの次はx+1である。よって連続する2つの自然数はxとx+1と表せる。
一の位の数をxとする。
x+10(13-x)+45=10x+13-x
【答】49
【解説】一の位と十の位の和が13なので、一の位がxなら十の位は(13-x)である。
2けたの自然数はx + 10(13-x)となり、一の位と十の位を入れ替えると10x + (13-x)となる。
クラスの生徒数をx人とする。
200x+300=250x-950
【答】5300円
【解説】求めるのは記念品の値段だが、人数をxとしたほうが式をたてるのが容易になる。
一人200円ずつで300円足りないので、記念品の値段は200x+300となる。
また、一人250円ずつで650円あまるので、記念品の値段は250x-650となる。
2通りで表した値段を=(等号)で結ぶと 200x+300=250x-950 これを解くとx=25
求めるものは記念品の値段なのでx=25を200x+300に代入すると200×25+300=5300
男子の身長の平均をxcmとする。
16x+17(x-3.3)=158.3×33
【答】160cm
【解説】男子の平均点をx点とすると女子はそれより3.7点高いので(x+3.7)点である。
平均点×人数 = 合計点なので | 男子 | 女子 | クラス |
人数 | 17 | 20 | 37 |
平均点 | x | x+3.7 | 77 |
合計点 | 17x | 20(x+3.7) | 77×37 |
男子の合計点+女子の合計点 = クラスの合計点 から方程式をつくる。 花子さんが家を出てからの時間をx分とする。
45x=120(x-10)
【答】16分後
【解説】花子さんが家を出てからの時間をx分とすると、母は10分後に家を出ているので、母の時間は花子さんより10分短い(x-10)分である。道のり=時間×速さなので | 花子 | 母 |
速さ(m/分) | 45 | 120 |
時間(分) | x | x-10 |
道のり(m) | 45x | 120(x-10) |
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。 行きにかかった時間をx分とする。
280x=210(x+9)
【答】27分
【解説】行きの時間をx分とすると帰りの時間は(x+9)分、道のり =時間×速さなので | 行き | 帰り |
速さ(m/分) | 280 | 210 |
時間(分) | x | x+9 |
道のり(m) | 280x | 210(x+9) |
往復は行きと帰りの道のりが同じなので 行きの道のり=帰りの道のり で式をつくる。 A君が家を出てからx分後に出会ったとする。
460x+360(x-5)=32
【答】9時15分
出発してからの時間をx分とする。
96x-64x=800
【答】25分後
【解説】同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
この場合,兄と妹の歩いた道のりの差が800mになったときである。
道のり=速さ×時間なので
兄の歩いた道のり = 96x
妹の歩いた道のり=64x
これらの差が1周分なので
96x-64x=800
これを解くと
x=25
姉が持っていたアメをx個とする。
64100x=36100x+x-18
【答】32個
【解説】求めるものは全部のアメの数だが、割合36%のもとになる数が姉がはじめに持っていた数なのでそれをxにする。
姉がxだと,弟はそれより18個少ないので(x-18)個, 姉から36%減らして弟に36%増やす。 | 姉 | 弟 |
はじめのアメの数 | x | x-18 |
アメの増減 | - 36100x | + 36100x |
最終的なアメの数 | x- 36100 x | x-18 + 36100x |
最終的に姉と弟のアメの数が同じになったので =で結んで方程式にする。 原価をx円とする
75100×1610x=x+80
【答】400円
【解説】原価をx円とすると、原価の6割の利益を見込んだ定価は1610x円である。この定価の25%引きの売値は1610x× 75100 円となる。
売値 = 原価+利益 から式をつくる。
【式】8%の食塩水をxgとする。
10+8100x=6100(200+x)
【答】100g