小さい方の偶数をxとする。
x+(x+2)=22
【答】10,12
【解説】偶数は2,4,6,・・・と2ずつ大きくなるので、連続する2つの偶数はx, x+2と表せる。
一の位の数をxとする。
x+10(3x-1)+3x-1+10x=121
【答】38
【解説】十の位の数が一の位の数の3倍より1小さいので一の位の数をxとすると十の位の数は3x-1となる。2けたの自然数はx+10(3x-1)、一の位と十の位の数を入れ替えると 3x-1+10xとなる。
子どもの人数をx人とする。
8x+22=11x-29
【答】158個
【解説】求めるものはアメの数だが、子どもの人数をxにしたほうが式がたてやすい。
x人に8個ずつ配ると8x, 22個あまるのでアメの数は8x+22
x人に11個ずつ配ると11x, 29個足りないのでアメの数は11x-29
8x+22と11x-29はどちらもアメの数を表しているので=(等号)で結べる。
8x+22 = 11x-29
これを解くとx=17
求めるものはアメの数なので 8x+22に代入して 8×17+22=158
女子の人数をx人とする。
134.1x+160(37-x)=146×37
【答】20人
【解説】32人のクラスで、男子の人数がx人なら、女子の人数は(32-x)人と表せる。また、平均点×人数=合計点なので| | 男子 | 女子 | クラス |
| 人数 | x | 32-x | 32 |
| 平均点 | 60 | 68 | 64.5 |
| 合計点 | 60x | 68(32-x) | 64.5×32 |
男子の合計点 + 女子の合計点 = クラスの合計点 から方程式をつくる 花子さんが家を出てからの時間をx分とする。
45x=120(x-10)
【答】16分後
【解説】花子さんが家を出てからの時間をx分とすると、母は10分後に家を出ているので、母の時間は花子さんより10分短い(x-10)分である。道のり=時間×速さなので| | 花子 | 母 |
| 速さ(m/分) | 45 | 120 |
| 時間(分) | x | x-10 |
| 道のり(m) | 45x | 120(x-10) |
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。 行きにかかった時間をx分とする。
70x=60(x+8)
【答】48分
【解説】行きの時間をx分とすると帰りの時間は(x+8)分、道のり =時間×速さなので| | 行き | 帰り |
| 速さ(m/分) | 70 | 60 |
| 時間(分) | x | x+8 |
| 道のり(m) | 70x | 60(x+8) |
往復は行きと帰りの道のりが同じなので 行きの道のり=帰りの道のり で式をつくる。 家を出てx分後に速さを変えたとする。
80x+65(30-x)=2100
【答】10分後
出発してからの時間をx分とする。
96x-64x=800
【答】25分後
【解説】同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
この場合,兄と妹の歩いた道のりの差が800mになったときである。
道のり=速さ×時間なので
兄の歩いた道のり = 96x
妹の歩いた道のり=64x
これらの差が1周分なので
96x-64x=800
これを解くと
x=25
はじめに姉が持っていたアメの数をx個とする。
30100x-5=25100×70100x
【答】40個
【解説】姉の持っていたアメをxとすると、妹にその70%をあげたので、自分には30%が残る。そこから姉は5個食べたので-5,妹は75%食べたので ×25100 姉妹はじめx0移動後30100x70100x食後30100x-525100×70100x
食べた後の2人のアメの数が同じなので=で結んで式を作る。
原価をx円とする
1610x-240=1410x
【答】1200円
【解説】原価をx円とすると原価の6割の利益を見込んでつけた定価は1610x円である。そこから240円引きで売った売値は(1610x-240)円となる。
また、原価の4割の利益になったとの記述から売値は 1410xとも表せる。2通りであらわした売値を=で結んで式をつくる。
【式】6%の食塩水をxg混ぜるとする。
2+6100x+10100(400-x)=30
【答】6%が300g, 10%が100g