中央のの整数をxとする。
(x-1)+x+(x+1)=-6
【答】-3,-2,-1
【解説】整数は1ずつ大きくなるので、xの次はx+1、xの前はx-1である。よって連続する3つの自然数はx-1, x, x+1と表せる。
十の位の数をxとする。
2x+1+10x+10(2x+1)+x=110
【答】37
【解説】一の位の数が十の位の数の2倍より1大きいので、十の位の数をxとすると一の位の数は2x+1である。2けたの自然数は2x+1+10x,一の位と十の位の数を入れ替えると10(2x+1)+xとなる。
クラスの人数をx人とする。
300x+700=400x-2200
【答】29人
【解説】| 一人の費用 | 300 | 400 |
| 人数 | x | x |
| 集金額 | 300x | 400x |
| 過不足 | 1200足りない | 1600あまる |
| 全費用 | 300x+700 | 400x-2200 |
全費用は300x+1200と400x-2200の2通りで表せるのでこれらを=(等号)で結んで方程式にする。 男子の人数をx人とする。
63x+70(35-x)=66.4×35
【答】18人
【解説】32人のクラスで、男子の人数がx人なら、女子の人数は(32-x)人と表せる。また、平均点×人数=合計点なので| | 男子 | 女子 | クラス |
| 人数 | x | 32-x | 32 |
| 平均点 | 60 | 68 | 64.5 |
| 合計点 | 60x | 68(32-x) | 64.5×32 |
男子の合計点 + 女子の合計点 = クラスの合計点 から方程式をつくる 花子さんが家を出てからの時間をx分とする。
45x=120(x-10)
【答】16分後
【解説】花子さんが家を出てからの時間をx分とすると、母は10分後に家を出ているので、母の時間は花子さんより10分短い(x-10)分である。道のり=時間×速さなので| | 花子 | 母 |
| 速さ(m/分) | 45 | 120 |
| 時間(分) | x | x-10 |
| 道のり(m) | 45x | 120(x-10) |
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。 行きの速さを毎分xmとする。
45x=60(x-50)
【答】毎分200m
【解説】帰りは行きより毎分50m遅いので、行きの速さをxm/分とすると帰りは(x-50)m/分となる。道のり=時間×速さなので| | 行き | 帰り |
| 速さ(m/分) | x | x-50 |
| 時間(分) | 45 | 60 |
| 道のり(m) | 45x | 60(x-50) |
往復は行きと帰りの道のりが同じなので 行きの道のり = 帰りの道のりで式ができる。 たかしくんの家から公園までをxmとする。
x75=930-x55+2
【答】600m
出発してからの時間をx分とする。
250x+150x=4800
【答】12分後
【解説】求める時間の単位を分にすると,速さの単位も時速kmから分速mに直す必要がある。時速15kmは15×1000÷60=250 分速250m, 時速9kmは9×1000÷60=150 分速150mである。
反対方向に回る場合, 二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
道のり=速さ×時間なので
たかし君の走った道のり = 250x
ひろこさんの走った道のり = 150x
これらの和が1周の道のりに等しいので
250x+150x=4800
これを解くとx=12
はじめに姉が持っていたアメの数をx個とする。
30100x-5=25100×70100x
【答】40個
【解説】姉の持っていたアメをxとすると、妹にその70%をあげたので、自分には30%が残る。そこから姉は5個食べたので-5,妹は75%食べたので ×25100 姉妹はじめx0移動後30100x70100x食後30100x-525100×70100x
食べた後の2人のアメの数が同じなので=で結んで式を作る。
原価をx円とする
810×1410x=x+180
【答】1500円
【解説】原価をx円とすると、原価の4割の利益を見込んだ定価は1410x円である。この定価の2割引きの売値は1410x× 810 円となる。
売値 = 原価+利益から式をつくる。
【式】食塩水Aの濃度をx%とする。
x+33=40
【答】7%