答表示

中1 方程式の利用 演習

文章題 連続する整数 ≫連続する2つの整数があり、その和は25である。この2つの整数を求めよ。
小さい方の整数をxとする。
x+(x+1)=25
【答】12,13
【解説】整数は1ずつ大きくなるので、xの次はx+1である。よって連続する2つの自然数はxとx+1と表せる。
文章題 2けたの自然数 ≫一の位の数と十の位の数との和が13となる2けたの自然数がある。この自然数の十の位と一の位の数を入れ替えた数はもとの数より45大きくなる。もとの2けたの自然数を求めよ。
一の位の数をxとする。
x+10(13-x)+45=10x+13-x
【答】49
【解説】一の位と十の位の和が13なので、一の位がxなら十の位は(13-x)である。
2けたの自然数はx + 10(13-x)となり、一の位と十の位を入れ替えると10x + (13-x)となる。
文章題 過不足の問題 ≫クラス全員でお金を出し合って記念品を買う。一人200円ずつ集めると300円足りない、一人250円ずつ集めると950円あまる。記念品の値段を求めよ。
クラスの生徒数をx人とする。
200x+300=250x-950
【答】5300円
【解説】求めるのは記念品の値段だが、人数をxとしたほうが式をたてるのが容易になる。
一人200円ずつで300円足りないので、記念品の値段は200x+300となる。
また、一人250円ずつで650円あまるので、記念品の値段は250x-650となる。
2通りで表した値段を=(等号)で結ぶと 200x+300=250x-950 これを解くとx=25
求めるものは記念品の値段なのでx=25を200x+300に代入すると200×25+300=5300
文章題 平均点の問題 ≫男子16人、女子17人のクラスで身長を測ったらクラス全体の平均が158.3㎝でした。男子の平均は女子平均より3.3㎝高かった。男子の身長の平均は何㎝でしょうか。
男子の身長の平均をxcmとする。
16x+17(x-3.3)=158.3×33
【答】160cm
【解説】男子の平均点をx点とすると女子はそれより3.7点高いので(x+3.7)点である。
平均点×人数 = 合計点なので
男子女子クラス
人数172037
平均点xx+3.777
合計点17x20(x+3.7)77×37
男子の合計点+女子の合計点 = クラスの合計点 から方程式をつくる。
文章題 速さ 追いつく1 ≫花子さんが家をでて毎分45mで歩いていった。その10分後に母が毎分120mで花子さんを追いかけた。母が花子さんに追いつくのは花子さんが家を出てから何分後か。
花子さんが家を出てからの時間をx分とする。
45x=120(x-10)
【答】16分後 
【解説】花子さんが家を出てからの時間をx分とすると、母は10分後に家を出ているので、母の時間は花子さんより10分短い(x-10)分である。道のり=時間×速さなので
花子
速さ(m/分)45120
時間(分)xx-10
道のり(m)45x120(x-10)
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。
文章題 速さ 往復 ≫A町とB町を自転車で往復した。行きは毎分280m、帰りは毎分210mで走ったら、走っていた時間は帰りのほうが9分長かった。行きにかかった時間は何分か。
行きにかかった時間をx分とする。
280x=210(x+9)
【答】27分
【解説】行きの時間をx分とすると帰りの時間は(x+9)分、道のり =時間×速さなので
 行き帰り
速さ(m/分)280210
時間(分)xx+9
道のり(m)280x210(x+9)
往復は行きと帰りの道のりが同じなので 行きの道のり=帰りの道のり で式をつくる。
文章題 速さが変わる問題 ≫A君の家とB君の家は1.5㎞離れている。A君は9時に家を出てB君の家に向かった。B君は同じ道を9時5分に出てA君の家に向かった。A君が時速4㎞、B君が時速3㎞のとき二人の出会った時刻は9時何分か。
A君が家を出てからx分後に出会ったとする。
460x+360(x-5)=32
【答】9時15分
文章題 池の周り ≫池の周りに1周800mの道がある。兄と妹が同時に同じ場所から出発して同じ方向に歩く。兄は分速96m, 妹は分速64mの場合、はじめて兄が妹を追い越すのは出発から何分後か。
出発してからの時間をx分とする。
96x-64x=800
【答】25分後
【解説】同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
この場合,兄と妹の歩いた道のりの差が800mになったときである。
道のり=速さ×時間なので
兄の歩いた道のり = 96x
妹の歩いた道のり=64x
これらの差が1周分なので
96x-64x=800
これを解くと
x=25
文章題 割合 ≫姉と弟がアメを持っている。姉は弟に比べて18個多く持っていた。姉が弟に自分のアメの36%をあげたので二人のアメの数がちょうど同じになった。 アメは全部で何個あったか。
姉が持っていたアメをx個とする。
64100x=36100x+x-18
【答】32個
【解説】求めるものは全部のアメの数だが、割合36%のもとになる数が姉がはじめに持っていた数なのでそれをxにする。
姉がxだと,弟はそれより18個少ないので(x-18)個, 姉から36%減らして弟に36%増やす。
はじめのアメの数xx-18
アメの増減- 36100x+ 36100x
最終的なアメの数x- 36100 xx-18 + 36100x

最終的に姉と弟のアメの数が同じになったので =で結んで方程式にする。
文章題 割引・割増 ≫ある品物を仕入れて、原価の6割の利益を見込んで定価をつけた。定価では全く売れなかったので定価の25%引きで売った。品物1個につき80円の利益になった。原価を求めよ。
原価をx円とする
75100×1610x=x+80
【答】400円
【解説】原価をx円とすると、原価の6割の利益を見込んだ定価は1610x円である。この定価の25%引きの売値は161075100 円となる。
売値 = 原価+利益 から式をつくる。
文章題 濃度 ≫ 5%の食塩水200gと8%の食塩水をいくらか混ぜると6%の食塩水になった。8%の食塩水は何g混ぜたか。 【式】8%の食塩水をxgとする。
  10+8100x=6100(200+x)
【答】100g
解答 表示
小さい方の整数をxとする。
x+(x+1)=25
【答】12,13
【解説】整数は1ずつ大きくなるので、xの次はx+1である。よって連続する2つの自然数はxとx+1と表せる。
一の位の数をxとする。
x+10(13-x)+45=10x+13-x
【答】49
【解説】一の位と十の位の和が13なので、一の位がxなら十の位は(13-x)である。
2けたの自然数はx + 10(13-x)となり、一の位と十の位を入れ替えると10x + (13-x)となる。
クラスの生徒数をx人とする。
200x+300=250x-950
【答】5300円
【解説】求めるのは記念品の値段だが、人数をxとしたほうが式をたてるのが容易になる。
一人200円ずつで300円足りないので、記念品の値段は200x+300となる。
また、一人250円ずつで650円あまるので、記念品の値段は250x-650となる。
2通りで表した値段を=(等号)で結ぶと 200x+300=250x-950 これを解くとx=25
求めるものは記念品の値段なのでx=25を200x+300に代入すると200×25+300=5300
男子の身長の平均をxcmとする。
16x+17(x-3.3)=158.3×33
【答】160cm
【解説】男子の平均点をx点とすると女子はそれより3.7点高いので(x+3.7)点である。
平均点×人数 = 合計点なので
男子女子クラス
人数172037
平均点xx+3.777
合計点17x20(x+3.7)77×37
男子の合計点+女子の合計点 = クラスの合計点 から方程式をつくる。
花子さんが家を出てからの時間をx分とする。
45x=120(x-10)
【答】16分後 
【解説】花子さんが家を出てからの時間をx分とすると、母は10分後に家を出ているので、母の時間は花子さんより10分短い(x-10)分である。道のり=時間×速さなので
花子
速さ(m/分)45120
時間(分)xx-10
道のり(m)45x120(x-10)
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。
行きにかかった時間をx分とする。
280x=210(x+9)
【答】27分
【解説】行きの時間をx分とすると帰りの時間は(x+9)分、道のり =時間×速さなので
 行き帰り
速さ(m/分)280210
時間(分)xx+9
道のり(m)280x210(x+9)
往復は行きと帰りの道のりが同じなので 行きの道のり=帰りの道のり で式をつくる。
A君が家を出てからx分後に出会ったとする。
460x+360(x-5)=32
【答】9時15分
出発してからの時間をx分とする。
96x-64x=800
【答】25分後
【解説】同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
この場合,兄と妹の歩いた道のりの差が800mになったときである。
道のり=速さ×時間なので
兄の歩いた道のり = 96x
妹の歩いた道のり=64x
これらの差が1周分なので
96x-64x=800
これを解くと
x=25
姉が持っていたアメをx個とする。
64100x=36100x+x-18
【答】32個
【解説】求めるものは全部のアメの数だが、割合36%のもとになる数が姉がはじめに持っていた数なのでそれをxにする。
姉がxだと,弟はそれより18個少ないので(x-18)個, 姉から36%減らして弟に36%増やす。
はじめのアメの数xx-18
アメの増減- 36100x+ 36100x
最終的なアメの数x- 36100 xx-18 + 36100x

最終的に姉と弟のアメの数が同じになったので =で結んで方程式にする。
原価をx円とする
75100×1610x=x+80
【答】400円
【解説】原価をx円とすると、原価の6割の利益を見込んだ定価は1610x円である。この定価の25%引きの売値は161075100 円となる。
売値 = 原価+利益 から式をつくる。
【式】8%の食塩水をxgとする。
  10+8100x=6100(200+x)
【答】100g
© 2006- 2022 SyuwaGakuin All Rights Reserved pc