答表示

中1 方程式の利用 演習

文章題 連続する整数 ≫連続する2つの整数があり、その和は-29である。この2つの整数を求めよ。
小さい方の整数をxとする。
x+(x+1)=-29
【答】-15,-14
【解説】整数は1ずつ大きくなるので、xの次はx+1である。よって連続する2つの自然数はxとx+1と表せる。
文章題 2けたの自然数 ≫一の位の数と十の位の数との和が12となる2けたの自然数がある。この自然数の十の位と一の位の数を入れ替えた数はもとの数より18大きくなる。もとの2けたの自然数を求めよ。
一の位の数をxとする。
x+10(12-x)+18=10x+12-x
【答】57
【解説】一の位と十の位の和が12なので、一の位がxなら十の位は(12-x)である。
2けたの自然数はx + 10(12-x)となり、一の位と十の位を入れ替えると10x + (12-x)となる。
文章題 過不足の問題 ≫あるクラスでクラス会をする。一人600円ずつ集めると1500円足りない。一人800円ずつ集めると3100円あまる。生徒の人数を求めよ。
生徒の人数をx人とする。
600x+1500=800x-3100
【答】23人
【解説】※(アメなど)「配る」ときと、この問題のように「集める」ときで「あまる」「足りない」の表し方が逆になることに注意。
600円ずつあつめて1500円足りないので、集めた600xにさらに1500円足して目標金額に達する。つまり目標金額は600x+1500である。
また、800円ずつ集めて3100円余るので、800xから余った分を引くと目標額になる。つまり800x-3100が目標金額である。
600x+1500と800x-3100はともに目標金額を表しているので=(等号)で結んで方程式となる。
文章題 平均点の問題 ≫37人のクラスで女子の平均身長が134.1㎝、男子の平均身長が160㎝、クラス全体の平均身長が146㎝でした。女子の人数を求めよ。
女子の人数をx人とする。
134.1x+160(37-x)=146×37
【答】20人
【解説】32人のクラスで、男子の人数がx人なら、女子の人数は(32-x)人と表せる。また、平均点×人数=合計点なので
男子女子クラス
人数x32-x32
平均点606864.5
合計点60x68(32-x)64.5×32
男子の合計点 + 女子の合計点 = クラスの合計点 から方程式をつくる
文章題 速さ 追いつく1 ≫花子さんが家をでて毎分75mで歩いていった。その6分後に母が毎分100mで花子さんを追いかけた。母が花子さんに追いつくのは花子さんが家を出てから何分後か。
花子さんが家を出てからの時間をx分とする。
75x=100(x-6)
【答】24分後 
【解説】花子さんが家を出てからの時間をx分とすると、母は6分後に家を出ているので、母の時間は花子さんより6分短い(x-6)分である。道のり=時間×速さなので
花子
速さ(m/分)75100
時間(分)xx-6
道のり(m)75x100(x-6)
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。
文章題 速さ 往復 ≫2地点A、Bを往復する。行きは40分かかり、帰りは行きの速さより毎分20mだけおそくしたので50分かかった。行きの速さは毎分何mか。
行きの速さを毎分xmとする。
40x=50(x-20)
【答】毎分100m
【解説】帰りは行きより毎分20m遅いので、行きの速さをxm/分とすると帰りは(x-20)m/分となる。道のり=時間×速さなので
 行き帰り
速さ(m/分)xx-20
時間(分)4050
道のり(m)40x50(x-20)
往復は行きと帰りの道のりが同じなので 行きの道のり = 帰りの道のりで式ができる。
文章題 速さが変わる問題 ≫A君が家から1200m離れた駅まで行った。家から途中の公園までは8分かかった。公園から駅までは速さを毎分10m遅くしたら12分かかった。家から公園まで歩いた速さは毎分何mか。
家から公園までを毎分xmで歩いたとする。
8x+12(x-10)=1200
【答】毎分66m
文章題 池の周り ≫湖の周りに1周4800mの道がある。たかし君とひろこさんが自転車で回る。たかし君の速さは時速15km, ひろこさんの速さは時速9kmである。二人が同時に同じ場所から出発して反対方向に回る場合、二人がはじめて出会うのは出発から何分後か。
出発してからの時間をx分とする。
250x+150x=4800
【答】12分後
【解説】求める時間の単位を分にすると,速さの単位も時速kmから分速mに直す必要がある。時速15kmは15×1000÷60=250 分速250m, 時速9kmは9×1000÷60=150 分速150mである。
反対方向に回る場合, 二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
道のり=速さ×時間なので
たかし君の走った道のり = 250x
ひろこさんの走った道のり = 150x
これらの和が1周の道のりに等しいので
250x+150x=4800
これを解くとx=12
文章題 割合 ≫ある中学校では全校生徒の49%が女子である。男子の人数は女子の人数より14人多い。この学校の全校生徒の人数を求めよ。
全校生徒数をx人とする
51100x-49100x=14
【答】700人
【解説】女子が49%なので100-49=51%が男子である。全校生徒をx人とすると女子は49100x、男子は51100xとなる。男子が女子より14人多いので男子の人数-女子の人数=14で式をつくる。
文章題 割引・割増 ≫ある品物を仕入れて、原価の8割の利益を見込んで定価をつけた。定価では全く売れなかったので250円引きで売った。品物1個につき70円の利益になった。原価を求めよ。
原価をx円とする
1810x-250=x+70
【答】400円
【解説】原価をx円とすると、原価の8割の利益を見込んでつけた定価は1810x円である。
売値はここか250円引いたものなので、(1810x-250)円となる。
売値 = 原価+利益から式をつくる
文章題 濃度 ≫ 12%の食塩水が90gある。これに3%の食塩水と4%の食塩水を混ぜた結果, 6%の食塩水が320gできた。3%の食塩水と4%の食塩水はそれぞれ何gずつ混ぜたのか求めよ。【式】3%の食塩水をxg混ぜるとする
 10.8+3100x+4100(230-x)=19.2
【答】3%が80g, 4%が150g
解答 表示
小さい方の整数をxとする。
x+(x+1)=-29
【答】-15,-14
【解説】整数は1ずつ大きくなるので、xの次はx+1である。よって連続する2つの自然数はxとx+1と表せる。
一の位の数をxとする。
x+10(12-x)+18=10x+12-x
【答】57
【解説】一の位と十の位の和が12なので、一の位がxなら十の位は(12-x)である。
2けたの自然数はx + 10(12-x)となり、一の位と十の位を入れ替えると10x + (12-x)となる。
生徒の人数をx人とする。
600x+1500=800x-3100
【答】23人
【解説】※(アメなど)「配る」ときと、この問題のように「集める」ときで「あまる」「足りない」の表し方が逆になることに注意。
600円ずつあつめて1500円足りないので、集めた600xにさらに1500円足して目標金額に達する。つまり目標金額は600x+1500である。
また、800円ずつ集めて3100円余るので、800xから余った分を引くと目標額になる。つまり800x-3100が目標金額である。
600x+1500と800x-3100はともに目標金額を表しているので=(等号)で結んで方程式となる。
女子の人数をx人とする。
134.1x+160(37-x)=146×37
【答】20人
【解説】32人のクラスで、男子の人数がx人なら、女子の人数は(32-x)人と表せる。また、平均点×人数=合計点なので
男子女子クラス
人数x32-x32
平均点606864.5
合計点60x68(32-x)64.5×32
男子の合計点 + 女子の合計点 = クラスの合計点 から方程式をつくる
花子さんが家を出てからの時間をx分とする。
75x=100(x-6)
【答】24分後 
【解説】花子さんが家を出てからの時間をx分とすると、母は6分後に家を出ているので、母の時間は花子さんより6分短い(x-6)分である。道のり=時間×速さなので
花子
速さ(m/分)75100
時間(分)xx-6
道のり(m)75x100(x-6)
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。
行きの速さを毎分xmとする。
40x=50(x-20)
【答】毎分100m
【解説】帰りは行きより毎分20m遅いので、行きの速さをxm/分とすると帰りは(x-20)m/分となる。道のり=時間×速さなので
 行き帰り
速さ(m/分)xx-20
時間(分)4050
道のり(m)40x50(x-20)
往復は行きと帰りの道のりが同じなので 行きの道のり = 帰りの道のりで式ができる。
家から公園までを毎分xmで歩いたとする。
8x+12(x-10)=1200
【答】毎分66m
出発してからの時間をx分とする。
250x+150x=4800
【答】12分後
【解説】求める時間の単位を分にすると,速さの単位も時速kmから分速mに直す必要がある。時速15kmは15×1000÷60=250 分速250m, 時速9kmは9×1000÷60=150 分速150mである。
反対方向に回る場合, 二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
道のり=速さ×時間なので
たかし君の走った道のり = 250x
ひろこさんの走った道のり = 150x
これらの和が1周の道のりに等しいので
250x+150x=4800
これを解くとx=12
全校生徒数をx人とする
51100x-49100x=14
【答】700人
【解説】女子が49%なので100-49=51%が男子である。全校生徒をx人とすると女子は49100x、男子は51100xとなる。男子が女子より14人多いので男子の人数-女子の人数=14で式をつくる。
原価をx円とする
1810x-250=x+70
【答】400円
【解説】原価をx円とすると、原価の8割の利益を見込んでつけた定価は1810x円である。
売値はここか250円引いたものなので、(1810x-250)円となる。
売値 = 原価+利益から式をつくる
【式】3%の食塩水をxg混ぜるとする
 10.8+3100x+4100(230-x)=19.2
【答】3%が80g, 4%が150g
© 2006- 2022 SyuwaGakuin All Rights Reserved pc