小さい方の偶数をxとする。
x+(x+2)=22
【答】10,12
【解説】偶数は2,4,6,・・・と2ずつ大きくなるので、連続する2つの偶数はx, x+2と表せる。
一の位の数をxとする。
x+10(12-x)+18=10x+12-x
【答】57
【解説】一の位と十の位の和が12なので、一の位がxなら十の位は(12-x)である。
2けたの自然数はx + 10(12-x)となり、一の位と十の位を入れ替えると10x + (12-x)となる。
子供の人数をx人とする
6x+8=7x-10
【答】18人
【解説】子供の数をxとして、折り紙の全枚数を2通りで表す。一人の 枚数 | 6 | 7 |
| 人数 | x | x |
| 配る数 | 6x | 7x |
| 過不足 | +8 | -10 |
折り紙の 全枚数 | 6x+8 | 7x-10 |
4枚ずつ配って8枚あまっているので、折り紙の全枚数を表すと4x+8、5枚配ろうとして10枚足りないので、5x-10が全枚数である。折り紙の全枚数は同じものを表しているので=(等号)でつなげば方程式になる。 男子の人数をx人とする。
65x+73.5(x-2)=69(2x-2)
【答】18人
【解説】女子より男子が2人多いので、男子がx人なら、女子は(x-2)人、クラスは(x+x-2)人である。| | 男子 | 女子 | クラス |
| 人数 | x | x-2 | 2x-2 |
| 平均点 | 65 | 73.5 | 69 |
| 合計点 | 65x | 73.5(x-2) | 69(2x-2) |
男子の合計点 + 女子の合計点 = クラスの合計点から式をつくる。 兄が家を出てからx分後に追いつくとする。
55(x+4)=75x
【答】11分後
【解説】兄が家を出てからの時間をx分とすると、兄は太郎くんの4分後に家を出ているので太郎くんの時間は兄より4分長い(x+4)分である。道のり=時間×速さなので| | 太郎 | 兄 |
| 速さ(m/分) | 55 | 75 |
| 時間(分) | x+4 | x |
| 道のり(m) | 55(x+4) | 75x |
追いつくときは、道のりが同じなので
太郎の歩いた道のり = 兄の歩いた道のり で式をつくる。
行きの速さを毎分xmとする。
45x=60(x-50)
【答】毎分200m
【解説】帰りは行きより毎分50m遅いので、行きの速さをxm/分とすると帰りは(x-50)m/分となる。道のり=時間×速さなので| | 行き | 帰り |
| 速さ(m/分) | x | x-50 |
| 時間(分) | 45 | 60 |
| 道のり(m) | 45x | 60(x-50) |
往復は行きと帰りの道のりが同じなので 行きの道のり = 帰りの道のりで式ができる。 8時x分に出会ったとする。
70x+65(x-8)=1100
【答】8時12分
【解説】A君が出会うまでに歩いた時間をx分とすると、B君は8分遅れて出発しているので歩いた時間は(x-8)分である。道のり=時間×速さなので| | A | B |
| 速さ(m/分) | 70 | 65 |
| 時間(分) | x | x-8 |
| 道のり(m) | 70x | 65(x-8) |
2人はAの家からBの家までの途中で出会うので、2人が歩いた道のりの合計が1100mである。 出発してからの時間をx分とする。
96x-64x=800
【答】25分後
【解説】同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
この場合,兄と妹の歩いた道のりの差が800mになったときである。
道のり=速さ×時間なので
兄の歩いた道のり = 96x
妹の歩いた道のり=64x
これらの差が1周分なので
96x-64x=800
これを解くと
x=25
姉が持っていたアメをx個とする。
85100x=15100x+x-12
【答】68個
【解説】求めるものは全部のアメの数だが、割合15%のもとになる数が姉がはじめに持っていた数なのでそれをxにする。
| | 姉 | 弟 |
| はじめ | x | x-12 |
| 移動 | - 15100x | + 15100x |
| あと | x- 15100 x | x-12 + 15100x |
定価をx円とする
610x=125100×900
【答】1875円
原価をx円とする
800×910=144100x
【答】500円