小さい方の偶数をxとする。
x+(x+2)=6
【答】2,4
【解説】偶数は2,4,6,・・・と2ずつ大きくなるので、連続する2つの偶数はx, x+2と表せる。
十の位の数をxとする。
2x+1+10x+10(2x+1)+x=110
【答】37
【解説】一の位の数が十の位の数の2倍より1大きいので、十の位の数をxとすると一の位の数は2x+1である。2けたの自然数は2x+1+10x,一の位と十の位の数を入れ替えると10(2x+1)+xとなる。
生徒の人数をx人とする
4x+10=6x-8
【答】9人,78
【解説】子供の数をxとして、折り紙の全枚数を2通りで表す。一人の 枚数 | 6 | 7 |
| 人数 | x | x |
| 配る数 | 6x | 7x |
| 過不足 | +8 | -10 |
折り紙の 全枚数 | 6x+8 | 7x-10 |
4枚ずつ配って8枚あまっているので、折り紙の全枚数を表すと4x+8、5枚配ろうとして10枚足りないので、5x-10が全枚数である。折り紙の全枚数は同じものを表しているので=(等号)でつなげば方程式になる。 女子の人数をx人とする。
134.1x+160(37-x)=146×37
【答】20人
【解説】32人のクラスで、男子の人数がx人なら、女子の人数は(32-x)人と表せる。また、平均点×人数=合計点なので| | 男子 | 女子 | クラス |
| 人数 | x | 32-x | 32 |
| 平均点 | 60 | 68 | 64.5 |
| 合計点 | 60x | 68(32-x) | 64.5×32 |
男子の合計点 + 女子の合計点 = クラスの合計点 から方程式をつくる 花子さんが家を出てからの時間をx分とする。
75x=100(x-6)
【答】24分後
【解説】花子さんが家を出てからの時間をx分とすると、母は6分後に家を出ているので、母の時間は花子さんより6分短い(x-6)分である。道のり=時間×速さなので| | 花子 | 母 |
| 速さ(m/分) | 75 | 100 |
| 時間(分) | x | x-6 |
| 道のり(m) | 75x | 100(x-6) |
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。 行きの速さを毎分xmとする。
40x=50(x-20)
【答】毎分100m
【解説】帰りは行きより毎分20m遅いので、行きの速さをxm/分とすると帰りは(x-20)m/分となる。道のり=時間×速さなので| | 行き | 帰り |
| 速さ(m/分) | x | x-20 |
| 時間(分) | 40 | 50 |
| 道のり(m) | 40x | 50(x-20) |
往復は行きと帰りの道のりが同じなので 行きの道のり = 帰りの道のりで式ができる。 家から公園までの速さを毎分xmとする。
15x+10(x-20)=1800
【答】毎分80m
【解説】速さを20m/分遅くしたので、家から公園の速さをxm/分とすると公園から駅は(x-20)m/分である。道のり=時間×速さなので| | 家〜公園 | 公園〜駅 |
| 速さ(m/分) | x | x-20 |
| 時間(分) | 15 | 10 |
| 道のり(m) | 15x | 10(x-20) |
道のりの合計が1800mを使って式をたてる。 出発してからの時間をx時間とする。
12x+8x=40
【答】2時間後
【解説】反対方向に回る場合, 二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
道のり=速さ×時間なので
兄の走った道のり = 12x
弟の走った道のり = 8x
これらの和が1周の道のりに等しいので
12x+8x=40
これを解くとx=2
全校生徒数をx人とする
51100x-49100x=14
【答】700人
【解説】女子が49%なので100-49=51%が男子である。全校生徒をx人とすると女子は49100x、男子は51100xとなる。男子が女子より14人多いので男子の人数-女子の人数=14で式をつくる。
定価をx円とする
810x=1110×1200
【答】1650円
原価をx円とする
800×910=144100x
【答】500円