小さい方の偶数をxとする。
x+(x+2)=6
【答】2,4
【解説】偶数は2,4,6,・・・と2ずつ大きくなるので、連続する2つの偶数はx, x+2と表せる。
一の位の数をxとする。
x+10(x-7)+10x+x-7=99
【答】18
【解説】一の位が十の位より7大きいので、一の位がxなら十の位は(x-7)である。
2けたの自然数はx + 10(x-7)となり、一の位と十の位を入れ替えると10x + (x-7)となる。
子どもの人数をx人とする。
8x+22=11x-29
【答】158個
【解説】求めるものはアメの数だが、子どもの人数をxにしたほうが式がたてやすい。
x人に8個ずつ配ると8x, 22個あまるのでアメの数は8x+22
x人に11個ずつ配ると11x, 29個足りないのでアメの数は11x-29
8x+22と11x-29はどちらもアメの数を表しているので=(等号)で結べる。
8x+22 = 11x-29
これを解くとx=17
求めるものはアメの数なので 8x+22に代入して 8×17+22=158
男子の平均点をx点とする。
18x+21(x+13)=67×39
【答】60点
【解説】男子の平均点をx点とすると女子はそれより3.7点高いので(x+3.7)点である。
平均点×人数 = 合計点なので| | 男子 | 女子 | クラス |
| 人数 | 17 | 20 | 37 |
| 平均点 | x | x+3.7 | 77 |
| 合計点 | 17x | 20(x+3.7) | 77×37 |
男子の合計点+女子の合計点 = クラスの合計点 から方程式をつくる。 花子さんが家を出てからの時間をx分とする。
75x=100(x-6)
【答】24分後
【解説】花子さんが家を出てからの時間をx分とすると、母は6分後に家を出ているので、母の時間は花子さんより6分短い(x-6)分である。道のり=時間×速さなので| | 花子 | 母 |
| 速さ(m/分) | 75 | 100 |
| 時間(分) | x | x-6 |
| 道のり(m) | 75x | 100(x-6) |
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。 A町からB町までの道のりをxkmとする。
x40+x30=28060
【答】80km
【解説】往復は行きと帰りの道のりの長さは同じなので両方xkm,時間 = 道のり÷速さ より| | 行き | 帰り |
| 速さ(km/時) | 40 | 30 |
| 時間(時間) | x40 | x30 |
| 道のり(km) | x | x |
合計時間が4時間40分を時間に直すと28060なので、行きの時間+帰りの時間 =28060 となる。 花子さんの家から公園までの道のりをxmとする。
x+30075+x55=30
【答】825m
出発してからの時間をx分とする。
60x-40x=2000
【答】100分後
【解説】求める時間を分にすると,速さの単位を時速kmから分速mに直す必要がある。時速3.6kmは3.6×1000÷60=60 分速60m,時速2.4kmは2.4×1000÷60=40 分速40m
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
この場合,姉と弟の歩いた道のりの差が2000mになったときである。
道のり=速さ×時間なので
姉の歩いた道のり =60x
弟の歩いた道のり= 40x
これらの差が1周分なので
60x-40x=2000
これを解くと
x=100
男子の人数をx人とする
x+98100x=495
【答】245人
【解説】割合98%が男子の人数をもとにしているので、求めるものは女子でも男子の人数をxとして方程式をたてる。女子の人数は(495-x)人なので
方程式を解いて出た解x=250 をもちいて 495-250 =245 が答えになる。
原価をx円とする
810×1410x=x+180
【答】1500円
【解説】原価をx円とすると、原価の4割の利益を見込んだ定価は1410x円である。この定価の2割引きの売値は1410x× 810 円となる。
売値 = 原価+利益から式をつくる。
【式】食塩水Aの濃度をx%とする。
x+33=40
【答】7%