小さい方の偶数をxとする。
x+(x+2)=22
【答】10,12
【解説】偶数は2,4,6,・・・と2ずつ大きくなるので、連続する2つの偶数はx, x+2と表せる。
一の位の数をxとする。
x+10(7-x)+9=10x+7-x
【答】34
【解説】一の位と十の位の和が7なので、一の位がxなら十の位は(7-x)である。
2けたの自然数はx + 10(7-x)となり、一の位と十の位を入れ替えると10x + (7-x)となる。
子どもの人数をxとする。
5x+14=6x-10
【答】134個
【解説】求めるものはアメの数だが、こどもの人数をxとしたほうが式がたてやすい。一人の 個数 | 5 | 6 |
| 人数 | x | x |
| 配る数 | 5x | 6x |
| 過不足 | +14 | -10 |
アメの 全個数 | 5x+14 | 6x-10 |
アメの全個数は同じものを表すので=(等号)で結べば方程式になる。
方程式を解いてx=24となるが、求めるものがアメのかずなので 5x+14に代入して 5×24+14=134
よって答が134個となる。 男子の平均点をx点とする。
18x+21(x+13)=67×39
【答】60点
【解説】男子の平均点をx点とすると女子はそれより3.7点高いので(x+3.7)点である。
平均点×人数 = 合計点なので| | 男子 | 女子 | クラス |
| 人数 | 17 | 20 | 37 |
| 平均点 | x | x+3.7 | 77 |
| 合計点 | 17x | 20(x+3.7) | 77×37 |
男子の合計点+女子の合計点 = クラスの合計点 から方程式をつくる。 花子さんが家を出てからの時間をx分とする。
75x=100(x-6)
【答】24分後
【解説】花子さんが家を出てからの時間をx分とすると、母は6分後に家を出ているので、母の時間は花子さんより6分短い(x-6)分である。道のり=時間×速さなので| | 花子 | 母 |
| 速さ(m/分) | 75 | 100 |
| 時間(分) | x | x-6 |
| 道のり(m) | 75x | 100(x-6) |
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。 AB間の道のりをxmとする。
x75-x80=4
【答】4800m
【解説】往復では行きと帰りの道のりが同じなので、両方x ,時間 =道のり÷速さなので| | 行き | 帰り |
| 速さ(m/分) | 80 | 75 |
| 時間(分) | x80 | x75 |
| 道のり(m) | x | x |
帰りのほうが4分長いので 帰りの時間 – 行きの時間 =4 となる。 家から公園までの速さを毎分xmとする。
15x+10(x-20)=1800
【答】毎分80m
【解説】速さを20m/分遅くしたので、家から公園の速さをxm/分とすると公園から駅は(x-20)m/分である。道のり=時間×速さなので| | 家〜公園 | 公園〜駅 |
| 速さ(m/分) | x | x-20 |
| 時間(分) | 15 | 10 |
| 道のり(m) | 15x | 10(x-20) |
道のりの合計が1800mを使って式をたてる。 B君の速さを毎分xmとする。
9×236+9x=50×236-50x
【答】毎分164m
【解説】反対方向に回る場合, 二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
道のり=速さ×時間より
9×236+9x=1周の道のり
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越すので
50×236-50x=1周のみちのり
9×236+9xと50×236-50xはともに1周の道のりを表すので = で結ぶと
9×236-9x=50×236-50x
これを解くとx=164
はじめに姉が持っていたアメの数をx個とする。
610x-3=23×410x×2
【答】45個
【解説】姉がはじめに持っていたアメの数をx個とする。妹は0個。姉が自分の4割を妹にあげたら姉は610x, 妹は410xそこから姉は3個減らし、妹は23となる。
姉妹はじめx0移動後610x410x食後610x-323×410x
食べた後、姉のアメの数が妹の2倍なので 姉のアメの数 = 妹のアメの数×2として方程式ができる。
原価をx円とする
810×1500 =1210x
【答】1000円
【式】食塩水Aの濃度をx%とする。
x+33=40
【答】7%