答表示

中1 方程式の利用 演習

文章題 連続する整数 ≫連続する3つの整数があり、その和は45である。この3つの整数を求めよ。
中央のの整数をxとする。
(x-1)+x+(x+1)=45
【答】14,15,16
【解説】整数は1ずつ大きくなるので、xの次はx+1、xの前はx-1である。よって連続する3つの自然数はx-1, x, x+1と表せる。
文章題 2けたの自然数 ≫一の位の数が十の位の数より7大きい2けたの自然数がある。この自然数の一の位の数と十の位の数を入れ替えた数をもとの数にたすと99になる。もとの自然数を求めよ。
一の位の数をxとする。
x+10(x-7)+10x+x-7=99
【答】18
【解説】一の位が十の位より7大きいので、一の位がxなら十の位は(x-7)である。
2けたの自然数はx + 10(x-7)となり、一の位と十の位を入れ替えると10x + (x-7)となる。
文章題 過不足の問題 ≫あるクラスでクラス会をする。一人600円ずつ集めると1500円足りない。一人800円ずつ集めると3100円あまる。生徒の人数を求めよ。
生徒の人数をx人とする。
600x+1500=800x-3100
【答】23人
【解説】※(アメなど)「配る」ときと、この問題のように「集める」ときで「あまる」「足りない」の表し方が逆になることに注意。
600円ずつあつめて1500円足りないので、集めた600xにさらに1500円足して目標金額に達する。つまり目標金額は600x+1500である。
また、800円ずつ集めて3100円余るので、800xから余った分を引くと目標額になる。つまり800x-3100が目標金額である。
600x+1500と800x-3100はともに目標金額を表しているので=(等号)で結んで方程式となる。
文章題 平均点の問題 ≫クラス39人全体の平均点が73点、女子20人の平均点が65.4点でした。男子の平均点を求めよ。
男子の平均点をx点とする。
20×65.4+19x=39×73
【答】81点
【解説】平均点×人数 = 合計点なので
男子女子クラス
人数201535
平均点x7167
合計点20x71×1567×35
男子の合計点+女子の合計点 = クラスの合計点 から方程式をつくる。
文章題 速さ 追いつく1 ≫花子さんが家をでて毎分75mで歩いていった。その6分後に母が毎分100mで花子さんを追いかけた。母が花子さんに追いつくのは花子さんが家を出てから何分後か。
花子さんが家を出てからの時間をx分とする。
75x=100(x-6)
【答】24分後 
【解説】花子さんが家を出てからの時間をx分とすると、母は6分後に家を出ているので、母の時間は花子さんより6分短い(x-6)分である。道のり=時間×速さなので
花子
速さ(m/分)75100
時間(分)xx-6
道のり(m)75x100(x-6)
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。
文章題 速さ 往復 ≫A町からB町を往復した。行きは毎時4㎞で帰りは毎時3㎞で歩いたら、帰りのほうが13分多くかかった。行きにかかった時間は何分か。
行きにかかった時間をx分とする。
x60=3×x+1360
【答】39分
【解説】行きの時間をx分とすると帰りの時間は(x+13)分、速さが毎時kmで表されているので分を時間に直すと, x分はx60時間, (x+13)分は x+1360 時間である。道のり =時間×速さなので
 行き帰り
速さ(km/時)43
時間(時間)x60x+1360
道のり(km)x60x+1360
往復は行きと帰りの道のりが同じなので 行きの道のり=帰りの道のり で式をつくる。
文章題 速さが変わる問題 ≫A町からB町までは時速4㎞で歩き、B町からC町までは時速3.5㎞で歩いたら、合計で7時間42分かかった。B町からC町までの道のりはA町からB町までの道のり0.7km遠い。A町からB町までの道のりは何kmか。
A町からB町までの道のりをxkmとする。
x4+x+0.73.5=46260
【答】14km
文章題 池の周り ≫1周2400mの円形の道を一郎くんと早紀さんが自転車で回る。一郎くんの速さは分速250m, 早紀さんの速さは分速150mである。二人が同時に同じ場所から出発して反対方向に回る場合、二人がはじめて出会うのは出発から何分後か。
出発してからの時間をx分とする。
250x+150x=2400
【答】6分後
【解説】反対方向に回る場合, 二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
道のり=速さ×時間なので
一郎くんの走った道のり = 250x
早紀さんの走った道のり = 150x
これらの和が1周の道のりに等しいので
250x+150x=2400
これを解くとx=6
文章題 割合 ≫はじめ姉がいくつかのアメを持っていた。妹は持っていなかったので、姉は自分の持っていたアメの70%を妹にあげた。 姉は残ったアメのうち5個を食べ、妹がもらったアメの75%を食べると姉と妹の持っているアメの数が同じになった。 姉がはじめに持っていたアメの数を求めよ。
はじめに姉が持っていたアメの数をx個とする。
30100x-5=25100×70100x
【答】40個
【解説】姉の持っていたアメをxとすると、妹にその70%をあげたので、自分には30%が残る。そこから姉は5個食べたので-5,妹は75%食べたので ×25100 はじめx0移動後30100x70100x食後30100x-525100×70100x
食べた後の2人のアメの数が同じなので=で結んで式を作る。
文章題 割引・割増 ≫ある品物を仕入れて、原価の48%の利益を見込んで定価をつけた。定価では売れなかったので900円引きで売った。品物1個につき原価の12%の利益になった。原価を求めよ。
原価をx円とする
148100x-900=112100x
【答】2500円
【解説】原価をx円とすると原価の48%の利益を見込んでつけた定価は148100x円である。そこから900円引きで売った売値は(148100x-900)円となる。
また、原価の12%の利益になったとの記述から売値は 112100xとも表せる。2通りであらわした売値を=で結んで式をつくる。
文章題 濃度 ≫原価900円の商品に定価をつけて、定価の4割引きで売ってもまだ原価の25%の利益があるようにしたい。定価をいくらにすればよいか。
定価をx円とする
610x=125100×900
【答】1875円
解答 表示
中央のの整数をxとする。
(x-1)+x+(x+1)=45
【答】14,15,16
【解説】整数は1ずつ大きくなるので、xの次はx+1、xの前はx-1である。よって連続する3つの自然数はx-1, x, x+1と表せる。
一の位の数をxとする。
x+10(x-7)+10x+x-7=99
【答】18
【解説】一の位が十の位より7大きいので、一の位がxなら十の位は(x-7)である。
2けたの自然数はx + 10(x-7)となり、一の位と十の位を入れ替えると10x + (x-7)となる。
生徒の人数をx人とする。
600x+1500=800x-3100
【答】23人
【解説】※(アメなど)「配る」ときと、この問題のように「集める」ときで「あまる」「足りない」の表し方が逆になることに注意。
600円ずつあつめて1500円足りないので、集めた600xにさらに1500円足して目標金額に達する。つまり目標金額は600x+1500である。
また、800円ずつ集めて3100円余るので、800xから余った分を引くと目標額になる。つまり800x-3100が目標金額である。
600x+1500と800x-3100はともに目標金額を表しているので=(等号)で結んで方程式となる。
男子の平均点をx点とする。
20×65.4+19x=39×73
【答】81点
【解説】平均点×人数 = 合計点なので
男子女子クラス
人数201535
平均点x7167
合計点20x71×1567×35
男子の合計点+女子の合計点 = クラスの合計点 から方程式をつくる。
花子さんが家を出てからの時間をx分とする。
75x=100(x-6)
【答】24分後 
【解説】花子さんが家を出てからの時間をx分とすると、母は6分後に家を出ているので、母の時間は花子さんより6分短い(x-6)分である。道のり=時間×速さなので
花子
速さ(m/分)75100
時間(分)xx-6
道のり(m)75x100(x-6)
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。
行きにかかった時間をx分とする。
x60=3×x+1360
【答】39分
【解説】行きの時間をx分とすると帰りの時間は(x+13)分、速さが毎時kmで表されているので分を時間に直すと, x分はx60時間, (x+13)分は x+1360 時間である。道のり =時間×速さなので
 行き帰り
速さ(km/時)43
時間(時間)x60x+1360
道のり(km)x60x+1360
往復は行きと帰りの道のりが同じなので 行きの道のり=帰りの道のり で式をつくる。
A町からB町までの道のりをxkmとする。
x4+x+0.73.5=46260
【答】14km
出発してからの時間をx分とする。
250x+150x=2400
【答】6分後
【解説】反対方向に回る場合, 二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
道のり=速さ×時間なので
一郎くんの走った道のり = 250x
早紀さんの走った道のり = 150x
これらの和が1周の道のりに等しいので
250x+150x=2400
これを解くとx=6
はじめに姉が持っていたアメの数をx個とする。
30100x-5=25100×70100x
【答】40個
【解説】姉の持っていたアメをxとすると、妹にその70%をあげたので、自分には30%が残る。そこから姉は5個食べたので-5,妹は75%食べたので ×25100 はじめx0移動後30100x70100x食後30100x-525100×70100x
食べた後の2人のアメの数が同じなので=で結んで式を作る。
原価をx円とする
148100x-900=112100x
【答】2500円
【解説】原価をx円とすると原価の48%の利益を見込んでつけた定価は148100x円である。そこから900円引きで売った売値は(148100x-900)円となる。
また、原価の12%の利益になったとの記述から売値は 112100xとも表せる。2通りであらわした売値を=で結んで式をつくる。
定価をx円とする
610x=125100×900
【答】1875円
© 2006- 2022 SyuwaGakuin All Rights Reserved pc