答表示

中1 方程式の利用 演習

文章題 連続する整数 ≫連続する2つの奇数があり、その和は56である。この2つの奇数を求めよ。
小さい方の奇数をxとする。
x+(x+2)=56
【答】27,29
【解説】奇数は1,3,5,7・・・と2ずつ大きくなるので連続する2つの奇数はx, x+2と表せる。
文章題 2けたの自然数 ≫一の位の数が十の位の数より2大きい2けたの自然数がある。この自然数の一の位の数と十の位の数を入れ替えた数をもとの数にたすと176になる。もとの自然数を求めよ。
一の位の数をxとする。
x+10(x-2)+10x+x-2=176
【答】79
【解説】一の位が十の位より2大きいので、一の位がxなら十の位は(x-2)である。
2けたの自然数はx + 10(x-2)となり、一の位と十の位を入れ替えると10x + (x-2)となる。
文章題 過不足の問題 ≫長いすがいくつかある。生徒全員が長いす1脚に5人ずつかけることにしたら、13人の生徒がかけられなかった。そこで、1脚に6人ずつかけたら、生徒が全く座らない長いす6脚と、1人しか座らない長いすが1脚できた。長いすの数を求めよ。
長いすの数をx脚とする。
5x+13=6(x-7)+1
【答】54脚
【解説】長いすの全数をxとすると5人ずつ座ると5x人座れるが、13人が座れないので生徒数は(5x+13)と表せる。
6人ずつ座ると全く座らない長いす6脚と1人だけのいすが1脚できたので、6人座る長いすの数は(x-7)である。よって6(x-7)+1が生徒数となる。2通りで表した生徒数を=で結んで方程式とする。
文章題 平均点の問題 ≫39人のクラスで男子18人の平均点が80点、クラス全体の平均点が73点でした。女子の平均点を求めよ。
女子の平均点をx点とする。
80×18+21x=73×39
【答】67点
【解説】平均点×人数 = 合計点なので
男子女子クラス
人数201535
平均点x7167
合計点20x71×1567×35
男子の合計点+女子の合計点 = クラスの合計点 から方程式をつくる。
文章題 速さ 追いつく1 ≫花子さんが家をでて毎分45mで歩いていった。その10分後に母が毎分120mで花子さんを追いかけた。母が花子さんに追いつくのは花子さんが家を出てから何分後か。
花子さんが家を出てからの時間をx分とする。
45x=120(x-10)
【答】16分後 
【解説】花子さんが家を出てからの時間をx分とすると、母は10分後に家を出ているので、母の時間は花子さんより10分短い(x-10)分である。道のり=時間×速さなので
花子
速さ(m/分)45120
時間(分)xx-10
道のり(m)45x120(x-10)
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。
文章題 速さ 往復 ≫2地点A、Bを往復する。行きは2時間かかり、帰りは行きの速さより毎時10kmだけおそくしたので2時間30分かかった。行きの速さは毎時何kmか。
行きの速さを毎時xkmとする。
2x=15060(x-10)
【答】毎時50km
【解説】帰りは行きより毎時10km遅いので、行きの速さをxkm/時とすると帰りは(x-10)km/時となる。2時間30分を時間に直すと15060時間, 道のり=時間×速さなので
 行き帰り
速さ(km/時)xx-10
時間(時間)215060
道のり(km)2x15060(x-10)
往復は行きと帰りの道のりが同じなので 行きの道のり = 帰りの道のりで式ができる。
文章題 速さが変わる問題 ≫A君が家から1200m離れた駅まで行った。家から途中の公園までは8分かかった。公園から駅までは速さを毎分10m遅くしたら12分かかった。家から公園まで歩いた速さは毎分何mか。
家から公園までを毎分xmで歩いたとする。
8x+12(x-10)=1200
【答】毎分66m
文章題 池の周り ≫池の周りに1周800mの道がある。兄と妹が同時に同じ場所から出発して同じ方向に歩く。兄は分速96m, 妹は分速64mの場合、はじめて兄が妹を追い越すのは出発から何分後か。
出発してからの時間をx分とする。
96x-64x=800
【答】25分後
【解説】同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
この場合,兄と妹の歩いた道のりの差が800mになったときである。
道のり=速さ×時間なので
兄の歩いた道のり = 96x
妹の歩いた道のり=64x
これらの差が1周分なので
96x-64x=800
これを解くと
x=25
文章題 割合 ≫姉と弟がアメを持っている。姉は弟に比べて12個多く持っていた。姉が弟に自分のアメの15%をあげたので二人のアメの数がちょうど同じになった。 アメは全部で何個あったか。
姉が持っていたアメをx個とする。
85100x=15100x+x-12
【答】68個
【解説】求めるものは全部のアメの数だが、割合15%のもとになる数が姉がはじめに持っていた数なのでそれをxにする。
はじめxx-12
移動- 15100x+ 15100x
あとx- 15100 xx-12 + 15100x
文章題 割引・割増 ≫定価800円の商品を定価の1割引で売ったが、まだ原価の44%の利益があった。この商品の原価を求めよ。
原価をx円とする
800×910=144100x
【答】500円
文章題 濃度 ≫ 1%の食塩水が200gある。これに6%の食塩水と10%の食塩水を混ぜた結果, 5%の食塩水が600gできた。6%の食塩水と10%の食塩水はそれぞれ何gずつ混ぜたのか求めよ。 【式】6%の食塩水をxg混ぜるとする。
 2+6100x+10100(400-x)=30
【答】6%が300g, 10%が100g
解答 表示
小さい方の奇数をxとする。
x+(x+2)=56
【答】27,29
【解説】奇数は1,3,5,7・・・と2ずつ大きくなるので連続する2つの奇数はx, x+2と表せる。
一の位の数をxとする。
x+10(x-2)+10x+x-2=176
【答】79
【解説】一の位が十の位より2大きいので、一の位がxなら十の位は(x-2)である。
2けたの自然数はx + 10(x-2)となり、一の位と十の位を入れ替えると10x + (x-2)となる。
長いすの数をx脚とする。
5x+13=6(x-7)+1
【答】54脚
【解説】長いすの全数をxとすると5人ずつ座ると5x人座れるが、13人が座れないので生徒数は(5x+13)と表せる。
6人ずつ座ると全く座らない長いす6脚と1人だけのいすが1脚できたので、6人座る長いすの数は(x-7)である。よって6(x-7)+1が生徒数となる。2通りで表した生徒数を=で結んで方程式とする。
女子の平均点をx点とする。
80×18+21x=73×39
【答】67点
【解説】平均点×人数 = 合計点なので
男子女子クラス
人数201535
平均点x7167
合計点20x71×1567×35
男子の合計点+女子の合計点 = クラスの合計点 から方程式をつくる。
花子さんが家を出てからの時間をx分とする。
45x=120(x-10)
【答】16分後 
【解説】花子さんが家を出てからの時間をx分とすると、母は10分後に家を出ているので、母の時間は花子さんより10分短い(x-10)分である。道のり=時間×速さなので
花子
速さ(m/分)45120
時間(分)xx-10
道のり(m)45x120(x-10)
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。
行きの速さを毎時xkmとする。
2x=15060(x-10)
【答】毎時50km
【解説】帰りは行きより毎時10km遅いので、行きの速さをxkm/時とすると帰りは(x-10)km/時となる。2時間30分を時間に直すと15060時間, 道のり=時間×速さなので
 行き帰り
速さ(km/時)xx-10
時間(時間)215060
道のり(km)2x15060(x-10)
往復は行きと帰りの道のりが同じなので 行きの道のり = 帰りの道のりで式ができる。
家から公園までを毎分xmで歩いたとする。
8x+12(x-10)=1200
【答】毎分66m
出発してからの時間をx分とする。
96x-64x=800
【答】25分後
【解説】同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
この場合,兄と妹の歩いた道のりの差が800mになったときである。
道のり=速さ×時間なので
兄の歩いた道のり = 96x
妹の歩いた道のり=64x
これらの差が1周分なので
96x-64x=800
これを解くと
x=25
姉が持っていたアメをx個とする。
85100x=15100x+x-12
【答】68個
【解説】求めるものは全部のアメの数だが、割合15%のもとになる数が姉がはじめに持っていた数なのでそれをxにする。
はじめxx-12
移動- 15100x+ 15100x
あとx- 15100 xx-12 + 15100x
原価をx円とする
800×910=144100x
【答】500円
【式】6%の食塩水をxg混ぜるとする。
 2+6100x+10100(400-x)=30
【答】6%が300g, 10%が100g
© 2006- 2022 SyuwaGakuin All Rights Reserved pc