答表示

中1 方程式の利用 演習

文章題 連続する整数 ≫連続する3つの整数があり、その和は15である。この3つの整数を求めよ。
中央のの整数をxとする。
(x-1)+x+(x+1)=15
【答】4,5,6
【解説】整数は1ずつ大きくなるので、xの次はx+1、xの前はx-1である。よって連続する3つの自然数はx-1, x, x+1と表せる。
文章題 2けたの自然数 ≫一の位の数と十の位の数との和が13となる2けたの自然数がある。この自然数の十の位と一の位の数を入れ替えた数はもとの数より45大きくなる。もとの2けたの自然数を求めよ。
一の位の数をxとする。
x+10(13-x)+45=10x+13-x
【答】49
【解説】一の位と十の位の和が13なので、一の位がxなら十の位は(13-x)である。
2けたの自然数はx + 10(13-x)となり、一の位と十の位を入れ替えると10x + (13-x)となる。
文章題 過不足の問題 ≫何人かの子どもにアメを配る。一人に7個ずつ配ると11個あまり、一人に9個ずつ配ると15個足りない。アメの数を求めよ。
子どもの人数をxとする。
7x+11=9x-15
【答】102個
【解説】求めるものはアメの数だが、子どもの人数をxにしたほうが式がたてやすい。
x人に7個ずつ配ると7x, 11個あまるのでアメの数は7x+11
x人に9個ずつ配ると9x, 15個足りないのでアメの数は9x-15
7x+11と9x-15はどちらもアメの数を表しているので=(等号)で結べる。
7x+11=9x-15
これを解くとx=13
求めるものはアメの数なので 7x+11に代入して 7×13+11=102
文章題 平均点の問題 ≫女子より男子のほうが2人多いクラスがある。このクラスの平均点が69点、男子の平均点が65点、女子の平均点が73.5点だった。クラスの男子の人数を求めよ。
男子の人数をx人とする。
65x+73.5(x-2)=69(2x-2)
【答】18人
【解説】女子より男子が2人多いので、男子がx人なら、女子は(x-2)人、クラスは(x+x-2)人である。
男子女子クラス
人数xx-22x-2
平均点6573.569
合計点65x73.5(x-2)69(2x-2)
男子の合計点 + 女子の合計点 = クラスの合計点から式をつくる。
文章題 速さ 追いつく1 ≫太郎君が家を出発して毎分55mで歩いていった。太郎君が出発してから4分後に兄が毎分75mで追いかけた。兄が太郎君に追いつくのは、兄が家を出てから何分後か。
兄が家を出てからx分後に追いつくとする。
55(x+4)=75x
【答】11分後
【解説】兄が家を出てからの時間をx分とすると、兄は太郎くんの4分後に家を出ているので太郎くんの時間は兄より4分長い(x+4)分である。道のり=時間×速さなので
太郎
速さ(m/分)5575
時間(分)x+4x
道のり(m)55(x+4)75x
追いつくときは、道のりが同じなので
太郎の歩いた道のり = 兄の歩いた道のり で式をつくる。
文章題 速さ 往復 ≫A地点とB地点の間を往復した。行きは毎分80m、帰りは毎分75mで歩いたら帰りのほうが4分多くかかった。AB間の道のりを求めよ。
AB間の道のりをxmとする。
x75-x80=4
【答】4800m
【解説】往復では行きと帰りの道のりが同じなので、両方x ,時間 =道のり÷速さなので
 行き帰り
速さ(m/分)8075
時間(分)x80x75
道のり(m)xx
帰りのほうが4分長いので 帰りの時間 – 行きの時間 =4 となる。
文章題 速さが変わる問題 ≫太郎君の家から花子さんの家まで行く途中に公園がある。太郎君の家から公園までの距離は花子さんの家から公園までの距離より150m近い。ある日太郎君が花子さんの家まで行った。太郎君は自分の家から公園まで毎分80mで歩き、公園から花子さんの家までは毎分60mで歩いた。全部で27分かかった。太郎君の家から公園までは何mか。
太郎君の家から公園までの道のりをxmとする。
x80+x+15060=27
【答】840m
【解説】太郎家から公園をxmとすると花子家から公園はそれより150m遠いので(x+150)m、時間=道のり÷速さなので
 太郎家〜公園公園〜花子家
速さ(m/分)8060
時間(分)x80x+15060
道のり(m)xx+150
時間の合計が27分を使って式をつくる。
文章題 池の周り ≫湖の周りを1周する道がある。A君とB君がこの道を自転車で走る。同じ地点から同時に出発して反対方向に回ると15分後にはじめて出会い, 同じ方向に回ると60分でA君がB君をはじめて追い越す。二人は常に一定の速さで走るものとし, A君の速さはB君の速さより毎分80mだけ速い。このとき, A君とB君の速さはそれぞれ毎分何mか求めよ。
B君の速さを毎分xmとする。
15(x+80)+15x=60(x+80)-60x
【答】A君毎分200m, B君毎分120m
【解説】A君はB君より毎分80mだけ速いので,A君の速さは 毎分(x+80)m
反対方向に回る場合, 二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
道のり=速さ×時間より
15(x+80)+15x=1周の道のり
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越すので
60(x+80)-60x=1周のみちのり
15(x+80)+15xと60(x+80)-60xはともに1周の道のりを表すので = で結ぶと
15(x+80)+15x=60(x+80)-60xは
これを解くとx=120これがB君の速さなので A君の速さは 120+80=200
文章題 割合 ≫ある中学校の全生徒数は495人である。女子の人数が男子の人数の98%のとき、この中学校の女子の人数を求めよ。
男子の人数をx人とする
x+98100x=495
【答】245人
【解説】割合98%が男子の人数をもとにしているので、求めるものは女子でも男子の人数をxとして方程式をたてる。女子の人数は(495-x)人なので
方程式を解いて出た解x=250 をもちいて 495-250 =245 が答えになる。
文章題 割引・割増 ≫ある品物を仕入れて、原価の8割の利益を見込んで定価をつけた。定価では全く売れなかったので250円引きで売った。品物1個につき70円の利益になった。原価を求めよ。
原価をx円とする
1810x-250=x+70
【答】400円
【解説】原価をx円とすると、原価の8割の利益を見込んでつけた定価は1810x円である。
売値はここか250円引いたものなので、(1810x-250)円となる。
売値 = 原価+利益から式をつくる
文章題 濃度 ≫ある品物を仕入れて、原価の7割の利益を見込んで定価をつけた。定価では全く売れなかったので定価の4割引きで売った。品物1個につき10円の利益になった。原価を求めよ。
原価をx円とする
610×1710x=x+10
【答】500円
【解説】原価をx円とすると、原価の7割の利益を見込んだ定価は1710x円である。この定価の4割引きの売値は1710610 円となる。
売値 = 原価+利益 から式をつくる。
解答 表示
中央のの整数をxとする。
(x-1)+x+(x+1)=15
【答】4,5,6
【解説】整数は1ずつ大きくなるので、xの次はx+1、xの前はx-1である。よって連続する3つの自然数はx-1, x, x+1と表せる。
一の位の数をxとする。
x+10(13-x)+45=10x+13-x
【答】49
【解説】一の位と十の位の和が13なので、一の位がxなら十の位は(13-x)である。
2けたの自然数はx + 10(13-x)となり、一の位と十の位を入れ替えると10x + (13-x)となる。
子どもの人数をxとする。
7x+11=9x-15
【答】102個
【解説】求めるものはアメの数だが、子どもの人数をxにしたほうが式がたてやすい。
x人に7個ずつ配ると7x, 11個あまるのでアメの数は7x+11
x人に9個ずつ配ると9x, 15個足りないのでアメの数は9x-15
7x+11と9x-15はどちらもアメの数を表しているので=(等号)で結べる。
7x+11=9x-15
これを解くとx=13
求めるものはアメの数なので 7x+11に代入して 7×13+11=102
男子の人数をx人とする。
65x+73.5(x-2)=69(2x-2)
【答】18人
【解説】女子より男子が2人多いので、男子がx人なら、女子は(x-2)人、クラスは(x+x-2)人である。
男子女子クラス
人数xx-22x-2
平均点6573.569
合計点65x73.5(x-2)69(2x-2)
男子の合計点 + 女子の合計点 = クラスの合計点から式をつくる。
兄が家を出てからx分後に追いつくとする。
55(x+4)=75x
【答】11分後
【解説】兄が家を出てからの時間をx分とすると、兄は太郎くんの4分後に家を出ているので太郎くんの時間は兄より4分長い(x+4)分である。道のり=時間×速さなので
太郎
速さ(m/分)5575
時間(分)x+4x
道のり(m)55(x+4)75x
追いつくときは、道のりが同じなので
太郎の歩いた道のり = 兄の歩いた道のり で式をつくる。
AB間の道のりをxmとする。
x75-x80=4
【答】4800m
【解説】往復では行きと帰りの道のりが同じなので、両方x ,時間 =道のり÷速さなので
 行き帰り
速さ(m/分)8075
時間(分)x80x75
道のり(m)xx
帰りのほうが4分長いので 帰りの時間 – 行きの時間 =4 となる。
太郎君の家から公園までの道のりをxmとする。
x80+x+15060=27
【答】840m
【解説】太郎家から公園をxmとすると花子家から公園はそれより150m遠いので(x+150)m、時間=道のり÷速さなので
 太郎家〜公園公園〜花子家
速さ(m/分)8060
時間(分)x80x+15060
道のり(m)xx+150
時間の合計が27分を使って式をつくる。
B君の速さを毎分xmとする。
15(x+80)+15x=60(x+80)-60x
【答】A君毎分200m, B君毎分120m
【解説】A君はB君より毎分80mだけ速いので,A君の速さは 毎分(x+80)m
反対方向に回る場合, 二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
道のり=速さ×時間より
15(x+80)+15x=1周の道のり
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越すので
60(x+80)-60x=1周のみちのり
15(x+80)+15xと60(x+80)-60xはともに1周の道のりを表すので = で結ぶと
15(x+80)+15x=60(x+80)-60xは
これを解くとx=120これがB君の速さなので A君の速さは 120+80=200
男子の人数をx人とする
x+98100x=495
【答】245人
【解説】割合98%が男子の人数をもとにしているので、求めるものは女子でも男子の人数をxとして方程式をたてる。女子の人数は(495-x)人なので
方程式を解いて出た解x=250 をもちいて 495-250 =245 が答えになる。
原価をx円とする
1810x-250=x+70
【答】400円
【解説】原価をx円とすると、原価の8割の利益を見込んでつけた定価は1810x円である。
売値はここか250円引いたものなので、(1810x-250)円となる。
売値 = 原価+利益から式をつくる
原価をx円とする
610×1710x=x+10
【答】500円
【解説】原価をx円とすると、原価の7割の利益を見込んだ定価は1710x円である。この定価の4割引きの売値は1710610 円となる。
売値 = 原価+利益 から式をつくる。
© 2006- 2022 SyuwaGakuin All Rights Reserved pc