小さい方の奇数をxとする。
x+(x+2)=56
【答】27,29
【解説】奇数は1,3,5,7・・・と2ずつ大きくなるので連続する2つの奇数はx, x+2と表せる。
一の位の数をxとする。
x+10(13-x)+45=10x+13-x
【答】49
【解説】一の位と十の位の和が13なので、一の位がxなら十の位は(13-x)である。
2けたの自然数はx + 10(13-x)となり、一の位と十の位を入れ替えると10x + (13-x)となる。
生徒の人数をx人とする。
1500x+6600=2000x-8400
【答】30人
【解説】※「配る」ときと、この問題のように「集める」ときで「あまる」「足りない」の表し方が逆になることに注意。
1500円ずつあつめて6600円足りないので、集めた1500xにさらに6600円足して目標金額に達する。つまり目標金額は1500x+6600である。
また、2000円ずつ集めて8400円余るので、2000xから余った8400円を引くと目標額になる。つまり2000x-8400が目標金額である。
1500x+6600と2000x-8400はともに目標金額を表しているので=(等号)で結んで方程式となる。
男子の身長の平均をxcmとする。
16x+17(x-3.3)=158.3×33
【答】160cm
【解説】男子の平均点をx点とすると女子はそれより3.7点高いので(x+3.7)点である。
平均点×人数 = 合計点なので| | 男子 | 女子 | クラス |
| 人数 | 17 | 20 | 37 |
| 平均点 | x | x+3.7 | 77 |
| 合計点 | 17x | 20(x+3.7) | 77×37 |
男子の合計点+女子の合計点 = クラスの合計点 から方程式をつくる。 兄が家を出てからx分後に追いつくとする。
55(x+4)=75x
【答】11分後
【解説】兄が家を出てからの時間をx分とすると、兄は太郎くんの4分後に家を出ているので太郎くんの時間は兄より4分長い(x+4)分である。道のり=時間×速さなので| | 太郎 | 兄 |
| 速さ(m/分) | 55 | 75 |
| 時間(分) | x+4 | x |
| 道のり(m) | 55(x+4) | 75x |
追いつくときは、道のりが同じなので
太郎の歩いた道のり = 兄の歩いた道のり で式をつくる。
行きにかかった時間をx分とする。
280x=210(x+9)
【答】27分
【解説】行きの時間をx分とすると帰りの時間は(x+9)分、道のり =時間×速さなので| | 行き | 帰り |
| 速さ(m/分) | 280 | 210 |
| 時間(分) | x | x+9 |
| 道のり(m) | 280x | 210(x+9) |
往復は行きと帰りの道のりが同じなので 行きの道のり=帰りの道のり で式をつくる。 家から公園までを毎分xmで歩いたとする。
8x+12(x-10)=1200
【答】毎分66m
出発してからの時間をx分とする。
96x-64x=800
【答】25分後
【解説】同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
この場合,兄と妹の歩いた道のりの差が800mになったときである。
道のり=速さ×時間なので
兄の歩いた道のり = 96x
妹の歩いた道のり=64x
これらの差が1周分なので
96x-64x=800
これを解くと
x=25
部活全体の人数をx人とする
60100x-40100x=7
【答】35人
【解説】部活全体の人数をx人とすると1年生は全体の40%なので 40100x, 2年生と3年生の合計は 60100x, 1年生が2・3年生合計より7人少ないので2・3年生合計 - 1年生 =7 で方程式を作る。
原価をx円とする
1810x-250=x+70
【答】400円
【解説】原価をx円とすると、原価の8割の利益を見込んでつけた定価は1810x円である。
売値はここか250円引いたものなので、(1810x-250)円となる。
売値 = 原価+利益から式をつくる
【式】6%の食塩水をxg混ぜるとする。
2+6100x+10100(400-x)=30
【答】6%が300g, 10%が100g