答表示

中1 方程式の利用 演習

文章題 連続する整数 ≫連続する2つの偶数があり、その和は6である。この2つの偶数を求めよ。
小さい方の偶数をxとする。
x+(x+2)=6
【答】2,4
【解説】偶数は2,4,6,・・・と2ずつ大きくなるので、連続する2つの偶数はx, x+2と表せる。
文章題 2けたの自然数 ≫十の位の数が一の位の数の3倍より1小さい2けたの自然数がある。この2けたの自然数の一の位と十の位を入れ替えた数をもとの自然数にたすと121になる。もとの2けたの自然数を求めよ。
一の位の数をxとする。
x+10(3x-1)+3x-1+10x=121
【答】38
【解説】十の位の数が一の位の数の3倍より1小さいので一の位の数をxとすると十の位の数は3x-1となる。2けたの自然数はx+10(3x-1)、一の位と十の位の数を入れ替えると 3x-1+10xとなる。
文章題 過不足の問題 ≫クラス全員でお金を出し合って記念品を買う。一人400円ずつ集めると900円足りない、一人500円ずつ集めると1700円あまる。クラスの生徒数を求めよ。
クラスの人数をx人とする。
400x+900=500x-1700
【答】26人
【解説】クラスの人数をx人とすると、一人400円ずつだと400x円集まるが、900円足りないので、400x+900が記念品の値段である。
また、500円ずつ集めた500xでは1700円あまるので、500x-1700が記念品の値段となる。
2通りで表した記念品の値段を=(等号)で結んで方程式とする。
文章題 平均点の問題 ≫32人のクラスがある。男子の平均点が60点、女子の平均点が68点で、クラス全体の平均点が64.5点だった。男子の人数を求めよ。
男子の人数をx人とする。
60x+68(32-x)=64.5×32
【答】14人
【解説】32人のクラスで、男子の人数がx人なら、女子の人数は(32-x)人と表せる。また、平均点×人数=合計点なので
男子女子クラス
人数x32-x32
平均点606864.5
合計点60x68(32-x)64.5×32
男子の合計点 + 女子の合計点 = クラスの合計点 から方程式をつくる
文章題 速さ 追いつく1 ≫太郎君が家を出発して毎分55mで歩いていった。太郎君が出発してから4分後に兄が毎分75mで追いかけた。兄が太郎君に追いつくのは、兄が家を出てから何分後か。
兄が家を出てからx分後に追いつくとする。
55(x+4)=75x
【答】11分後
【解説】兄が家を出てからの時間をx分とすると、兄は太郎くんの4分後に家を出ているので太郎くんの時間は兄より4分長い(x+4)分である。道のり=時間×速さなので
太郎
速さ(m/分)5575
時間(分)x+4x
道のり(m)55(x+4)75x
追いつくときは、道のりが同じなので
太郎の歩いた道のり = 兄の歩いた道のり で式をつくる。
文章題 速さ 往復 ≫2地点A、Bを往復する。行きは40分かかり、帰りは行きの速さより毎分20mだけおそくしたので50分かかった。行きの速さは毎分何mか。
行きの速さを毎分xmとする。
40x=50(x-20)
【答】毎分100m
【解説】帰りは行きより毎分20m遅いので、行きの速さをxm/分とすると帰りは(x-20)m/分となる。道のり=時間×速さなので
 行き帰り
速さ(m/分)xx-20
時間(分)4050
道のり(m)40x50(x-20)
往復は行きと帰りの道のりが同じなので 行きの道のり = 帰りの道のりで式ができる。
文章題 速さが変わる問題 ≫家から駅まで4㎞ある。家を出てから途中までは毎分75mで歩き、残りは毎分55mで歩いた。 ちょうど1時間で駅に着いた。速さを変えたのは家を出てから何分後か。
家を出てx分後に速さを変えたとする。
75x+55(60-x)=4000
【答】35分後
文章題 池の周り ≫湖の周りを1周する道がある。A君とB君がこの道を歩く。同じ地点から同時に出発して反対方向に回ると12分30秒後にはじめて出会い, 同じ方向に回ると43分45秒でA君がB君をはじめて追い越す。二人は常に一定の速さで歩くものとし, A君の速さはB君の速さより毎分32mだけ速い。このとき, A君とB君の速さはそれぞれ毎分何mか求めよ。
B君の速さを毎分xmとする。
252(x+32)+252x=1754(x+32)-1754x
【答】A君毎分72m, B君毎分40m
【解説】A君はB君より毎分32mだけ速いので,A君の速さは毎分(x+32)m
反対方向に回る場合,二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
12分30秒を分に直すと12+3060=252分なので
道のり=速さ×時間より
252(x+32)+252x=1周の道のり
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
43分45秒を分に直すと43+4560=1754分なので
1754(x+32)-1754x=1周のみちのり
252(x+32)+252xと1754(x+32)-1754xはともに1周の道のりを表すので=で結ぶと
252(x+32)+252x=1754(x+32)-1754x
これを解くとx=40これがB君の速さなのでA君の速さは40+32=72
文章題 割合 ≫ある中学校では全校生徒の48%が女子である。男子の人数は女子の人数より13人多い。この学校の全校生徒の人数を求めよ。
全校生徒数をx人とする
52100x-48100x=13
【答】325人
【解説】女子が48%なので100-48=52%が男子である。全校生徒をx人とすると女子は48100x、男子は52100xとなる。男子が女子より13人多いので男子の人数-女子の人数=13で式をつくる。
文章題 割引・割増 ≫原価900円の商品に定価をつけて、定価の4割引きで売ってもまだ原価の25%の利益があるようにしたい。定価をいくらにすればよいか。
定価をx円とする
610x=125100×900
【答】1875円
文章題 濃度 ≫ある品物を仕入れて、原価の8割の利益を見込んで定価をつけた。定価では全く売れなかったので250円引きで売った。品物1個につき70円の利益になった。原価を求めよ。
原価をx円とする
1810x-250=x+70
【答】400円
【解説】原価をx円とすると、原価の8割の利益を見込んでつけた定価は1810x円である。
売値はここか250円引いたものなので、(1810x-250)円となる。
売値 = 原価+利益から式をつくる
解答 表示
小さい方の偶数をxとする。
x+(x+2)=6
【答】2,4
【解説】偶数は2,4,6,・・・と2ずつ大きくなるので、連続する2つの偶数はx, x+2と表せる。
一の位の数をxとする。
x+10(3x-1)+3x-1+10x=121
【答】38
【解説】十の位の数が一の位の数の3倍より1小さいので一の位の数をxとすると十の位の数は3x-1となる。2けたの自然数はx+10(3x-1)、一の位と十の位の数を入れ替えると 3x-1+10xとなる。
クラスの人数をx人とする。
400x+900=500x-1700
【答】26人
【解説】クラスの人数をx人とすると、一人400円ずつだと400x円集まるが、900円足りないので、400x+900が記念品の値段である。
また、500円ずつ集めた500xでは1700円あまるので、500x-1700が記念品の値段となる。
2通りで表した記念品の値段を=(等号)で結んで方程式とする。
男子の人数をx人とする。
60x+68(32-x)=64.5×32
【答】14人
【解説】32人のクラスで、男子の人数がx人なら、女子の人数は(32-x)人と表せる。また、平均点×人数=合計点なので
男子女子クラス
人数x32-x32
平均点606864.5
合計点60x68(32-x)64.5×32
男子の合計点 + 女子の合計点 = クラスの合計点 から方程式をつくる
兄が家を出てからx分後に追いつくとする。
55(x+4)=75x
【答】11分後
【解説】兄が家を出てからの時間をx分とすると、兄は太郎くんの4分後に家を出ているので太郎くんの時間は兄より4分長い(x+4)分である。道のり=時間×速さなので
太郎
速さ(m/分)5575
時間(分)x+4x
道のり(m)55(x+4)75x
追いつくときは、道のりが同じなので
太郎の歩いた道のり = 兄の歩いた道のり で式をつくる。
行きの速さを毎分xmとする。
40x=50(x-20)
【答】毎分100m
【解説】帰りは行きより毎分20m遅いので、行きの速さをxm/分とすると帰りは(x-20)m/分となる。道のり=時間×速さなので
 行き帰り
速さ(m/分)xx-20
時間(分)4050
道のり(m)40x50(x-20)
往復は行きと帰りの道のりが同じなので 行きの道のり = 帰りの道のりで式ができる。
家を出てx分後に速さを変えたとする。
75x+55(60-x)=4000
【答】35分後
B君の速さを毎分xmとする。
252(x+32)+252x=1754(x+32)-1754x
【答】A君毎分72m, B君毎分40m
【解説】A君はB君より毎分32mだけ速いので,A君の速さは毎分(x+32)m
反対方向に回る場合,二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
12分30秒を分に直すと12+3060=252分なので
道のり=速さ×時間より
252(x+32)+252x=1周の道のり
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
43分45秒を分に直すと43+4560=1754分なので
1754(x+32)-1754x=1周のみちのり
252(x+32)+252xと1754(x+32)-1754xはともに1周の道のりを表すので=で結ぶと
252(x+32)+252x=1754(x+32)-1754x
これを解くとx=40これがB君の速さなのでA君の速さは40+32=72
全校生徒数をx人とする
52100x-48100x=13
【答】325人
【解説】女子が48%なので100-48=52%が男子である。全校生徒をx人とすると女子は48100x、男子は52100xとなる。男子が女子より13人多いので男子の人数-女子の人数=13で式をつくる。
定価をx円とする
610x=125100×900
【答】1875円
原価をx円とする
1810x-250=x+70
【答】400円
【解説】原価をx円とすると、原価の8割の利益を見込んでつけた定価は1810x円である。
売値はここか250円引いたものなので、(1810x-250)円となる。
売値 = 原価+利益から式をつくる
© 2006- 2022 SyuwaGakuin All Rights Reserved pc