小さい方の偶数をxとする。
x+(x+2)=154
【答】76,78
【解説】偶数は2,4,6,・・・と2ずつ大きくなるので、連続する2つの偶数はx, x+2と表せる。
十の位の数をxとする。
40x+x-(4x+10x)=54
【答】28
【解説】一の位が十の位の4倍なので十の位の数をxとすると一の位は4xとなる。すると2けたの自然数は4x+10x、一の位と十の位を入れ替えた数は40x+xとなる。
子どもの人数をxとする。
7x+11=9x-15
【答】102個
【解説】求めるものはアメの数だが、子どもの人数をxにしたほうが式がたてやすい。
x人に7個ずつ配ると7x, 11個あまるのでアメの数は7x+11
x人に9個ずつ配ると9x, 15個足りないのでアメの数は9x-15
7x+11と9x-15はどちらもアメの数を表しているので=(等号)で結べる。
7x+11=9x-15
これを解くとx=13
求めるものはアメの数なので 7x+11に代入して 7×13+11=102
男子の平均点をx点とする。
71×15+20x=67×35
【答】64点
【解説】平均点×人数 = 合計点なので| | 男子 | 女子 | クラス |
| 人数 | 20 | 15 | 35 |
| 平均点 | x | 71 | 67 |
| 合計点 | 20x | 71×15 | 67×35 |
男子の合計点+女子の合計点 = クラスの合計点 から方程式をつくる。 花子さんが家を出てからの時間をx分とする。
45x=120(x-10)
【答】16分後
【解説】花子さんが家を出てからの時間をx分とすると、母は10分後に家を出ているので、母の時間は花子さんより10分短い(x-10)分である。道のり=時間×速さなので| | 花子 | 母 |
| 速さ(m/分) | 45 | 120 |
| 時間(分) | x | x-10 |
| 道のり(m) | 45x | 120(x-10) |
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。 行きにかかった時間をx分とする。
4×x60=3×x+1360
【答】39分
【解説】行きの時間をx分とすると帰りの時間は(x+13)分、速さが毎時kmで表されているので分を時間に直すと, x分はx60時間, (x+13)分は x+1360 時間である。道のり =時間×速さなので| | 行き | 帰り |
| 速さ(km/時) | 4 | 3 |
| 時間(時間) | x60 | x+1360 |
| 道のり(km) | 4×x60 | 3×x+1360 |
往復は行きと帰りの道のりが同じなので 行きの道のり=帰りの道のり で式をつくる。 花子さんの家から公園までの道のりをxmとする。
x+30075+x55=30
【答】825m
B君の速さを毎分xmとする。
15(x+80)+15x=60(x+80)-60x
【答】A君毎分200m, B君毎分120m
【解説】A君はB君より毎分80mだけ速いので,A君の速さは 毎分(x+80)m
反対方向に回る場合, 二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
道のり=速さ×時間より
15(x+80)+15x=1周の道のり
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越すので
60(x+80)-60x=1周のみちのり
15(x+80)+15xと60(x+80)-60xはともに1周の道のりを表すので = で結ぶと
15(x+80)+15x=60(x+80)-60xは
これを解くとx=120これがB君の速さなので A君の速さは 120+80=200
全校生徒数をx人とする
51100x-49100x=14
【答】700人
【解説】女子が49%なので100-49=51%が男子である。全校生徒をx人とすると女子は49100x、男子は51100xとなる。男子が女子より14人多いので男子の人数-女子の人数=14で式をつくる。
原価をx円とする
1810x-250=x+70
【答】400円
【解説】原価をx円とすると、原価の8割の利益を見込んでつけた定価は1810x円である。
売値はここか250円引いたものなので、(1810x-250)円となる。
売値 = 原価+利益から式をつくる
原価をx円とする
800×910=144100x
【答】500円