小さい方の奇数をxとする。
x+(x+2)=56
【答】27,29
【解説】奇数は1,3,5,7・・・と2ずつ大きくなるので連続する2つの奇数はx, x+2と表せる。
十の位の数をxとする。
20x+x-(2x+10x)=9
【答】12
【解説】一の位が十の位の2倍なので十の位の数をxとすると一の位は2xとなる。すると2けたの自然数は2x+10x、一の位と十の位を入れ替えた数は20x+xとなる。
長いすの数をx脚とする。
4x+9=5(x-1)+2
【答】12脚
【解説】全長いす数をxとすると4人ずつ座ると4x人座れるが、9人が座れないので生徒数は(4x+9)と表せる。
5人ずつ座ると1つの長いすだけ2人がけになるので、5人座る長いすの数は(x-1)である。よって5(x-1)+2が生徒数となる。2通りで表した生徒数を=で結んで方程式とする。
男子の人数をx人とする。
72x+80(x+18)=76.5(2x+18)
【答】63人
【解説】
兄が家を出てからx分後に追いつくとする。
55(x+4)=75x
【答】11分後
【解説】兄が家を出てからの時間をx分とすると、兄は太郎くんの4分後に家を出ているので太郎くんの時間は兄より4分長い(x+4)分である。道のり=時間×速さなので| | 太郎 | 兄 |
| 速さ(m/分) | 55 | 75 |
| 時間(分) | x+4 | x |
| 道のり(m) | 55(x+4) | 75x |
追いつくときは、道のりが同じなので
太郎の歩いた道のり = 兄の歩いた道のり で式をつくる。
A町からB町までの道のりをxkmとする。
x40+x30=28060
【答】80km
【解説】往復は行きと帰りの道のりの長さは同じなので両方xkm,時間 = 道のり÷速さ より| | 行き | 帰り |
| 速さ(km/時) | 40 | 30 |
| 時間(時間) | x40 | x30 |
| 道のり(km) | x | x |
合計時間が4時間40分を時間に直すと28060なので、行きの時間+帰りの時間 =28060 となる。 太郎君の家から公園までの道のりをxmとする。
x80+x+15060=27
【答】840m
【解説】太郎家から公園をxmとすると花子家から公園はそれより150m遠いので(x+150)m、時間=道のり÷速さなので| | 太郎家〜公園 | 公園〜花子家 |
| 速さ(m/分) | 80 | 60 |
| 時間(分) | x80 | x+15060 |
| 道のり(m) | x | x+150 |
時間の合計が27分を使って式をつくる。 出発してからの時間をx分とする。
60x-40x=2000
【答】100分後
【解説】求める時間を分にすると,速さの単位を時速kmから分速mに直す必要がある。時速3.6kmは3.6×1000÷60=60 分速60m,時速2.4kmは2.4×1000÷60=40 分速40m
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
この場合,姉と弟の歩いた道のりの差が2000mになったときである。
道のり=速さ×時間なので
姉の歩いた道のり =60x
弟の歩いた道のり= 40x
これらの差が1周分なので
60x-40x=2000
これを解くと
x=100
姉が持っていたアメをx個とする。
64100x=36100x+x-18
【答】32個
【解説】求めるものは全部のアメの数だが、割合36%のもとになる数が姉がはじめに持っていた数なのでそれをxにする。
姉がxだと,弟はそれより18個少ないので(x-18)個, 姉から36%減らして弟に36%増やす。| | 姉 | 弟 |
| はじめのアメの数 | x | x-18 |
| アメの増減 | - 36100x | + 36100x |
| 最終的なアメの数 | x- 36100 x | x-18 + 36100x |
最終的に姉と弟のアメの数が同じになったので =で結んで方程式にする。 定価をx円とする
610x=125100×900
【答】1875円
定価をx円とする
610x=125100×900
【答】1875円