小さい方の奇数をxとする。
x+(x+2)=20
【答】9,11
【解説】奇数は1,3,5,7・・・と2ずつ大きくなるので連続する2つの奇数はx, x+2と表せる。
十の位の数をxとする。
12x+2+10x+10(12x+2)+x=154
【答】86
【解説】一の位の数が十の位の数の半分より2大きいので、十の位の数をxとすると一の位の数は12x+2となる。2けたの自然数は12x+2+10x、一の位と十の位を入れ替えるとx+10(12x+2)となる。
子どもの人数をxとする。
5x+14=6x-10
【答】134個
【解説】求めるものはアメの数だが、こどもの人数をxとしたほうが式がたてやすい。一人の 個数 | 5 | 6 |
| 人数 | x | x |
| 配る数 | 5x | 6x |
| 過不足 | +14 | -10 |
アメの 全個数 | 5x+14 | 6x-10 |
アメの全個数は同じものを表すので=(等号)で結べば方程式になる。
方程式を解いてx=24となるが、求めるものがアメのかずなので 5x+14に代入して 5×24+14=134
よって答が134個となる。 男子の平均点をx点とする。
20×65.4+19x=39×73
【答】81点
【解説】平均点×人数 = 合計点なので| | 男子 | 女子 | クラス |
| 人数 | 20 | 15 | 35 |
| 平均点 | x | 71 | 67 |
| 合計点 | 20x | 71×15 | 67×35 |
男子の合計点+女子の合計点 = クラスの合計点 から方程式をつくる。 花子さんが家を出てからの時間をx分とする。
75x=100(x-6)
【答】24分後
【解説】花子さんが家を出てからの時間をx分とすると、母は6分後に家を出ているので、母の時間は花子さんより6分短い(x-6)分である。道のり=時間×速さなので| | 花子 | 母 |
| 速さ(m/分) | 75 | 100 |
| 時間(分) | x | x-6 |
| 道のり(m) | 75x | 100(x-6) |
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。 A町からB町までをx mとする。
x80+x70=60
【答】2240m
【解説】往復では行きと帰りの道のりの長さは同じなので両方xm, 時間 = 道のり÷速さなので| | 行き | 帰り |
| 速さ(m/分) | 80 | 70 |
| 時間(分) | x80 | x70 |
| 道のり(m) | x | x |
合計時間が60分なので、行きの時間+帰りの時間 =60 となる。 たかしくんの家から公園までをxmとする。
x75=930-x55+2
【答】600m
B君の速さを毎分xmとする。
9×236+9x=50×236-50x
【答】毎分164m
【解説】反対方向に回る場合, 二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
道のり=速さ×時間より
9×236+9x=1周の道のり
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越すので
50×236-50x=1周のみちのり
9×236+9xと50×236-50xはともに1周の道のりを表すので = で結ぶと
9×236-9x=50×236-50x
これを解くとx=164
全男子数をx人とする
15100x-8100(710-x)=26
【答】360人
【解説】全男子数をx人とすると、全女子数は(710-x)人となる。
自転車通学の男子は15100x、女子は8100(710-x)となる。
自転車通学の人数は男子が女子より26人多いので、「自転車通学の男子」-「自転車通学の女子」=26で方程式をつくる。
原価をx円とする
1410x-200=115100x
【答】800円
【解説】原価をx円とすると原価の4割の利益を見込んでつけた定価は1410x円である。そこから200円引きで売った売値は(1410x-200)円となる。
また、原価の15%の利益になったとの記述から売値は 115100xとも表せる。2通りであらわした売値を=で結んで式をつくる。
定価をx円とする
610x=125100×900
【答】1875円