中央のの整数をxとする。
(x-1)+x+(x+1)=45
【答】14,15,16
【解説】整数は1ずつ大きくなるので、xの次はx+1、xの前はx-1である。よって連続する3つの自然数はx-1, x, x+1と表せる。
一の位の数をxとする。
x+10(x-7)+10x+x-7=99
【答】18
【解説】一の位が十の位より7大きいので、一の位がxなら十の位は(x-7)である。
2けたの自然数はx + 10(x-7)となり、一の位と十の位を入れ替えると10x + (x-7)となる。
クラスの人数をx人とする。
400x+900=500x-1700
【答】26人
【解説】クラスの人数をx人とすると、一人400円ずつだと400x円集まるが、900円足りないので、400x+900が記念品の値段である。
また、500円ずつ集めた500xでは1700円あまるので、500x-1700が記念品の値段となる。
2通りで表した記念品の値段を=(等号)で結んで方程式とする。
男子の身長の平均をxcmとする。
16x+17(x-3.3)=158.3×33
【答】160cm
【解説】男子の平均点をx点とすると女子はそれより3.7点高いので(x+3.7)点である。
平均点×人数 = 合計点なので| | 男子 | 女子 | クラス |
| 人数 | 17 | 20 | 37 |
| 平均点 | x | x+3.7 | 77 |
| 合計点 | 17x | 20(x+3.7) | 77×37 |
男子の合計点+女子の合計点 = クラスの合計点 から方程式をつくる。 兄が家を出てからx分後に追いつくとする。
55(x+4)=75x
【答】11分後
【解説】兄が家を出てからの時間をx分とすると、兄は太郎くんの4分後に家を出ているので太郎くんの時間は兄より4分長い(x+4)分である。道のり=時間×速さなので| | 太郎 | 兄 |
| 速さ(m/分) | 55 | 75 |
| 時間(分) | x+4 | x |
| 道のり(m) | 55(x+4) | 75x |
追いつくときは、道のりが同じなので
太郎の歩いた道のり = 兄の歩いた道のり で式をつくる。
A町からB町までをx mとする。
x80+x70=60
【答】2240m
【解説】往復では行きと帰りの道のりの長さは同じなので両方xm, 時間 = 道のり÷速さなので| | 行き | 帰り |
| 速さ(m/分) | 80 | 70 |
| 時間(分) | x80 | x70 |
| 道のり(m) | x | x |
合計時間が60分なので、行きの時間+帰りの時間 =60 となる。 家を出てx分後に速さを変えたとする。
75x+55(60-x)=4000
【答】35分後
B君の速さを毎分xmとする。
15(x+80)+15x=60(x+80)-60x
【答】A君毎分200m, B君毎分120m
【解説】A君はB君より毎分80mだけ速いので,A君の速さは 毎分(x+80)m
反対方向に回る場合, 二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
道のり=速さ×時間より
15(x+80)+15x=1周の道のり
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越すので
60(x+80)-60x=1周のみちのり
15(x+80)+15xと60(x+80)-60xはともに1周の道のりを表すので = で結ぶと
15(x+80)+15x=60(x+80)-60xは
これを解くとx=120これがB君の速さなので A君の速さは 120+80=200
男子の人数をx人とする
x+98100x=495
【答】245人
【解説】割合98%が男子の人数をもとにしているので、求めるものは女子でも男子の人数をxとして方程式をたてる。女子の人数は(495-x)人なので
方程式を解いて出た解x=250 をもちいて 495-250 =245 が答えになる。
原価をx円とする
810×1500 =1210x
【答】1000円
【式】3%の食塩水をxg混ぜるとする
10.8+3100x+4100(230-x)=19.2
【答】3%が80g, 4%が150g