小さい方の整数をxとする。
x+(x+1)=-29
【答】-15,-14
【解説】整数は1ずつ大きくなるので、xの次はx+1である。よって連続する2つの自然数はxとx+1と表せる。
十の位の数をxとする。
20x+x-(2x+10x)=9
【答】12
【解説】一の位が十の位の2倍なので十の位の数をxとすると一の位は2xとなる。すると2けたの自然数は2x+10x、一の位と十の位を入れ替えた数は20x+xとなる。
子どもの人数をx人とする。
8x+22=11x-29
【答】158個
【解説】求めるものはアメの数だが、子どもの人数をxにしたほうが式がたてやすい。
x人に8個ずつ配ると8x, 22個あまるのでアメの数は8x+22
x人に11個ずつ配ると11x, 29個足りないのでアメの数は11x-29
8x+22と11x-29はどちらもアメの数を表しているので=(等号)で結べる。
8x+22 = 11x-29
これを解くとx=17
求めるものはアメの数なので 8x+22に代入して 8×17+22=158
男子の人数をx人とする。
63x+70(35-x)=66.4×35
【答】18人
【解説】32人のクラスで、男子の人数がx人なら、女子の人数は(32-x)人と表せる。また、平均点×人数=合計点なので| | 男子 | 女子 | クラス |
| 人数 | x | 32-x | 32 |
| 平均点 | 60 | 68 | 64.5 |
| 合計点 | 60x | 68(32-x) | 64.5×32 |
男子の合計点 + 女子の合計点 = クラスの合計点 から方程式をつくる 花子さんが家を出てからの時間をx分とする。
45x=120(x-10)
【答】16分後
【解説】花子さんが家を出てからの時間をx分とすると、母は10分後に家を出ているので、母の時間は花子さんより10分短い(x-10)分である。道のり=時間×速さなので| | 花子 | 母 |
| 速さ(m/分) | 45 | 120 |
| 時間(分) | x | x-10 |
| 道のり(m) | 45x | 120(x-10) |
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。 A町からB町までをx mとする。
x75+x50=40
【答】1200m
【解説】往復では行きと帰りの道のりの長さは同じなので両方xm, 時間 = 道のり÷速さなので| | 行き | 帰り |
| 速さ(m/分) | 75 | 50 |
| 時間(分) | x75 | x50 |
| 道のり(m) | x | x |
合計時間が40分なので、行きの時間+帰りの時間 =40 となる。 A町からB町までの道のりをxkmとする。
x4+x+0.73.5=46260
【答】14km
出発してからの時間をx分とする。
96x-64x=800
【答】25分後
【解説】同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
この場合,兄と妹の歩いた道のりの差が800mになったときである。
道のり=速さ×時間なので
兄の歩いた道のり = 96x
妹の歩いた道のり=64x
これらの差が1周分なので
96x-64x=800
これを解くと
x=25
男子の人数をx人とする
x+98100x=495
【答】245人
【解説】割合98%が男子の人数をもとにしているので、求めるものは女子でも男子の人数をxとして方程式をたてる。女子の人数は(495-x)人なので
方程式を解いて出た解x=250 をもちいて 495-250 =245 が答えになる。
原価をx円とする
1410x-200=115100x
【答】800円
【解説】原価をx円とすると原価の4割の利益を見込んでつけた定価は1410x円である。そこから200円引きで売った売値は(1410x-200)円となる。
また、原価の15%の利益になったとの記述から売値は 115100xとも表せる。2通りであらわした売値を=で結んで式をつくる。
原価をx円とする
148100x-900=112100x
【答】2500円
【解説】原価をx円とすると原価の48%の利益を見込んでつけた定価は148100x円である。そこから900円引きで売った売値は(148100x-900)円となる。
また、原価の12%の利益になったとの記述から売値は 112100xとも表せる。2通りであらわした売値を=で結んで式をつくる。