小さい方の整数をxとする。
x+(x+1)=25
【答】12,13
【解説】整数は1ずつ大きくなるので、xの次はx+1である。よって連続する2つの自然数はxとx+1と表せる。
一の位の数をxとする。
x+10(x-4)+10x+x-4=110
【答】37
【解説】一の位が十の位より4大きいので、一の位がxなら十の位は(x-4)である。
2けたの自然数はx + 10(x-4)となり、一の位と十の位を入れ替えると10x + (x-4)となる。
子供の人数をx人とする
6x+8=7x-10
【答】18人
【解説】子供の数をxとして、折り紙の全枚数を2通りで表す。一人の 枚数 | 6 | 7 |
| 人数 | x | x |
| 配る数 | 6x | 7x |
| 過不足 | +8 | -10 |
折り紙の 全枚数 | 6x+8 | 7x-10 |
4枚ずつ配って8枚あまっているので、折り紙の全枚数を表すと4x+8、5枚配ろうとして10枚足りないので、5x-10が全枚数である。折り紙の全枚数は同じものを表しているので=(等号)でつなげば方程式になる。 男子の人数をx人とする。
60x+68(32-x)=64.5×32
【答】14人
【解説】32人のクラスで、男子の人数がx人なら、女子の人数は(32-x)人と表せる。また、平均点×人数=合計点なので| | 男子 | 女子 | クラス |
| 人数 | x | 32-x | 32 |
| 平均点 | 60 | 68 | 64.5 |
| 合計点 | 60x | 68(32-x) | 64.5×32 |
男子の合計点 + 女子の合計点 = クラスの合計点 から方程式をつくる 花子さんが家を出てからの時間をx分とする。
75x=100(x-6)
【答】24分後
【解説】花子さんが家を出てからの時間をx分とすると、母は6分後に家を出ているので、母の時間は花子さんより6分短い(x-6)分である。道のり=時間×速さなので| | 花子 | 母 |
| 速さ(m/分) | 75 | 100 |
| 時間(分) | x | x-6 |
| 道のり(m) | 75x | 100(x-6) |
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。 AB間の道のりをxmとする。
x75-x80=4
【答】4800m
【解説】往復では行きと帰りの道のりが同じなので、両方x ,時間 =道のり÷速さなので| | 行き | 帰り |
| 速さ(m/分) | 80 | 75 |
| 時間(分) | x80 | x75 |
| 道のり(m) | x | x |
帰りのほうが4分長いので 帰りの時間 – 行きの時間 =4 となる。 家から公園までを毎分xmで歩いたとする。
8x+12(x-10)=1200
【答】毎分66m
B君の速さを毎分xmとする。
9×236+9x=50×236-50x
【答】毎分164m
【解説】反対方向に回る場合, 二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
道のり=速さ×時間より
9×236+9x=1周の道のり
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越すので
50×236-50x=1周のみちのり
9×236+9xと50×236-50xはともに1周の道のりを表すので = で結ぶと
9×236-9x=50×236-50x
これを解くとx=164
全校生徒数をx人とする
51100x-49100x=14
【答】700人
【解説】女子が49%なので100-49=51%が男子である。全校生徒をx人とすると女子は49100x、男子は51100xとなる。男子が女子より14人多いので男子の人数-女子の人数=14で式をつくる。
原価をx円とする
1410x-200=115100x
【答】800円
【解説】原価をx円とすると原価の4割の利益を見込んでつけた定価は1410x円である。そこから200円引きで売った売値は(1410x-200)円となる。
また、原価の15%の利益になったとの記述から売値は 115100xとも表せる。2通りであらわした売値を=で結んで式をつくる。
【式】食塩水Aの濃度をx%とする。
5.5x+9.9=26.4
【答】3%