答表示

中1 方程式の利用 演習

文章題 連続する整数 ≫連続する2つの奇数があり、その和は20である。この2つの奇数を求めよ。
小さい方の奇数をxとする。
x+(x+2)=20
【答】9,11
【解説】奇数は1,3,5,7・・・と2ずつ大きくなるので連続する2つの奇数はx, x+2と表せる。
文章題 2けたの自然数 ≫一の位の数が十の位の数のちょうど4倍になるような2けたの自然数がある。この2けたの自然数の一の位と十の位の数を入れ替えた数はもとの自然数より54大きくなる。もとの2けたの自然数を求めよ。
十の位の数をxとする。
40x+x-(4x+10x)=54
【答】28
【解説】一の位が十の位の4倍なので十の位の数をxとすると一の位は4xとなる。すると2けたの自然数は4x+10x、一の位と十の位を入れ替えた数は40x+xとなる。
文章題 過不足の問題 ≫何人かの子どもにアメを配る。一人に5個ずつ配ると14個あまり、一人に6個ずつ配ると10個足りない。アメの数を求めよ。
子どもの人数をxとする。
5x+14=6x-10
【答】134個
【解説】求めるものはアメの数だが、こどもの人数をxとしたほうが式がたてやすい。
一人の
個数
56
人数xx
配る数5x6x
過不足+14-10
アメの
全個数
5x+146x-10
アメの全個数は同じものを表すので=(等号)で結べば方程式になる。
方程式を解いてx=24となるが、求めるものがアメのかずなので 5x+14に代入して 5×24+14=134
よって答が134個となる。
文章題 平均点の問題 ≫男子17人、女子20人のクラスでクラス全体の平均点が77点だった。男子の平均点は女子の平均点より3.7点低かった。男子の平均点を求めよ。
男子の平均点をx点とする。
17x+20(x+3.7)=77×37
【答】75点
【解説】男子の平均点をx点とすると女子はそれより3.7点高いので(x+3.7)点である。
平均点×人数 = 合計点なので
男子女子クラス
人数172037
平均点xx+3.777
合計点17x20(x+3.7)77×37
男子の合計点+女子の合計点 = クラスの合計点 から方程式をつくる。
文章題 速さ 追いつく1 ≫太郎君が家を出発して毎分55mで歩いていった。太郎君が出発してから4分後に兄が毎分75mで追いかけた。兄が太郎君に追いつくのは、兄が家を出てから何分後か。
兄が家を出てからx分後に追いつくとする。
55(x+4)=75x
【答】11分後
【解説】兄が家を出てからの時間をx分とすると、兄は太郎くんの4分後に家を出ているので太郎くんの時間は兄より4分長い(x+4)分である。道のり=時間×速さなので
太郎
速さ(m/分)5575
時間(分)x+4x
道のり(m)55(x+4)75x
追いつくときは、道のりが同じなので
太郎の歩いた道のり = 兄の歩いた道のり で式をつくる。
文章題 速さ 往復 ≫A町からB町までの間を往復した。行きは時速40km、帰りは時速30kmで往復にかかった時間は4時間40分だった。A町からB町までの道のりは何kmか。
A町からB町までの道のりをxkmとする。
x40+x30=28060
【答】80km
【解説】往復は行きと帰りの道のりの長さは同じなので両方xkm,時間 = 道のり÷速さ より
 行き帰り
速さ(km/時)4030
時間(時間)x40x30
道のり(km)xx
合計時間が4時間40分を時間に直すと28060なので、行きの時間+帰りの時間 =28060 となる。
文章題 速さが変わる問題 ≫たかし君の家からよしこさんの家まで1300mあり、途中に公園がある。ある日公園で待ち合わせて二人が同時に家を出た。たかし君は毎分85m、 よしこさんは毎分65mで歩いていったらたかし君のほうが2分早く着いた。たかし君の家から公園までの道のりを求めよ。
たかしくんの家から公園までをxmとする。
x85=1300-x65-2
【答】663m
【解説】たかし家〜公園〜よしこ家が1300mなのでたかし家〜公園をxmとするとよしこ家〜公園は(1300-x)mとなる。時間=道のり÷速さなので
 たかし家
〜公園
よしこ家
〜公園
速さ(m/分)8565
時間(分)x851300-x65
道のり(m)x1300-x
たかしが2分早くついたのでたかしの時間 = よしこの時間-2である。
文章題 池の周り ≫湖の周りを1周する道がある。A君とB君がこの道を歩く。同じ地点から同時に出発して反対方向に回ると12分30秒後にはじめて出会い, 同じ方向に回ると43分45秒でA君がB君をはじめて追い越す。二人は常に一定の速さで歩くものとし, A君の速さはB君の速さより毎分32mだけ速い。このとき, A君とB君の速さはそれぞれ毎分何mか求めよ。
B君の速さを毎分xmとする。
252(x+32)+252x=1754(x+32)-1754x
【答】A君毎分72m, B君毎分40m
【解説】A君はB君より毎分32mだけ速いので,A君の速さは毎分(x+32)m
反対方向に回る場合,二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
12分30秒を分に直すと12+3060=252分なので
道のり=速さ×時間より
252(x+32)+252x=1周の道のり
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
43分45秒を分に直すと43+4560=1754分なので
1754(x+32)-1754x=1周のみちのり
252(x+32)+252xと1754(x+32)-1754xはともに1周の道のりを表すので=で結ぶと
252(x+32)+252x=1754(x+32)-1754x
これを解くとx=40これがB君の速さなのでA君の速さは40+32=72
文章題 割合 ≫全校生徒710人のうち、自転車通学の割合は男子が全男子数の15%で、女子は全女子数の8%である。 自転車通学の人数は男子のほうが女子より26人多い。この学校の全男子数を求めよ。
全男子数をx人とする
15100x-8100(710-x)=26
【答】360人
【解説】全男子数をx人とすると、全女子数は(710-x)人となる。
自転車通学の男子は15100x、女子は8100(710-x)となる。
自転車通学の人数は男子が女子より26人多いので、「自転車通学の男子」-「自転車通学の女子」=26で方程式をつくる。
文章題 割引・割増 ≫定価1500円の商品を定価の2割引で売ったが、まだ原価の2割の利益があった。この商品の原価を求めよ。
原価をx円とする
810×1500 =1210x
【答】1000円
文章題 濃度 ≫ 濃度のわからない食塩水Aと11%の食塩水Bがある。Aを100gとBを300g混ぜたら10%の食塩水になった。食塩水Aの濃度を求めよ。 【式】食塩水Aの濃度をx%とする。
 x+33=40
【答】7%
解答 表示
小さい方の奇数をxとする。
x+(x+2)=20
【答】9,11
【解説】奇数は1,3,5,7・・・と2ずつ大きくなるので連続する2つの奇数はx, x+2と表せる。
十の位の数をxとする。
40x+x-(4x+10x)=54
【答】28
【解説】一の位が十の位の4倍なので十の位の数をxとすると一の位は4xとなる。すると2けたの自然数は4x+10x、一の位と十の位を入れ替えた数は40x+xとなる。
子どもの人数をxとする。
5x+14=6x-10
【答】134個
【解説】求めるものはアメの数だが、こどもの人数をxとしたほうが式がたてやすい。
一人の
個数
56
人数xx
配る数5x6x
過不足+14-10
アメの
全個数
5x+146x-10
アメの全個数は同じものを表すので=(等号)で結べば方程式になる。
方程式を解いてx=24となるが、求めるものがアメのかずなので 5x+14に代入して 5×24+14=134
よって答が134個となる。
男子の平均点をx点とする。
17x+20(x+3.7)=77×37
【答】75点
【解説】男子の平均点をx点とすると女子はそれより3.7点高いので(x+3.7)点である。
平均点×人数 = 合計点なので
男子女子クラス
人数172037
平均点xx+3.777
合計点17x20(x+3.7)77×37
男子の合計点+女子の合計点 = クラスの合計点 から方程式をつくる。
兄が家を出てからx分後に追いつくとする。
55(x+4)=75x
【答】11分後
【解説】兄が家を出てからの時間をx分とすると、兄は太郎くんの4分後に家を出ているので太郎くんの時間は兄より4分長い(x+4)分である。道のり=時間×速さなので
太郎
速さ(m/分)5575
時間(分)x+4x
道のり(m)55(x+4)75x
追いつくときは、道のりが同じなので
太郎の歩いた道のり = 兄の歩いた道のり で式をつくる。
A町からB町までの道のりをxkmとする。
x40+x30=28060
【答】80km
【解説】往復は行きと帰りの道のりの長さは同じなので両方xkm,時間 = 道のり÷速さ より
 行き帰り
速さ(km/時)4030
時間(時間)x40x30
道のり(km)xx
合計時間が4時間40分を時間に直すと28060なので、行きの時間+帰りの時間 =28060 となる。
たかしくんの家から公園までをxmとする。
x85=1300-x65-2
【答】663m
【解説】たかし家〜公園〜よしこ家が1300mなのでたかし家〜公園をxmとするとよしこ家〜公園は(1300-x)mとなる。時間=道のり÷速さなので
 たかし家
〜公園
よしこ家
〜公園
速さ(m/分)8565
時間(分)x851300-x65
道のり(m)x1300-x
たかしが2分早くついたのでたかしの時間 = よしこの時間-2である。
B君の速さを毎分xmとする。
252(x+32)+252x=1754(x+32)-1754x
【答】A君毎分72m, B君毎分40m
【解説】A君はB君より毎分32mだけ速いので,A君の速さは毎分(x+32)m
反対方向に回る場合,二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
12分30秒を分に直すと12+3060=252分なので
道のり=速さ×時間より
252(x+32)+252x=1周の道のり
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
43分45秒を分に直すと43+4560=1754分なので
1754(x+32)-1754x=1周のみちのり
252(x+32)+252xと1754(x+32)-1754xはともに1周の道のりを表すので=で結ぶと
252(x+32)+252x=1754(x+32)-1754x
これを解くとx=40これがB君の速さなのでA君の速さは40+32=72
全男子数をx人とする
15100x-8100(710-x)=26
【答】360人
【解説】全男子数をx人とすると、全女子数は(710-x)人となる。
自転車通学の男子は15100x、女子は8100(710-x)となる。
自転車通学の人数は男子が女子より26人多いので、「自転車通学の男子」-「自転車通学の女子」=26で方程式をつくる。
原価をx円とする
810×1500 =1210x
【答】1000円
【式】食塩水Aの濃度をx%とする。
 x+33=40
【答】7%
© 2006- 2022 SyuwaGakuin All Rights Reserved pc