答表示

中1 方程式の利用 演習

文章題 連続する整数 ≫連続する2つの奇数があり、その和は140である。この2つの奇数を求めよ。
小さい方の奇数をxとする。
x+(x+2)=140
【答】69,71
【解説】奇数は1,3,5,7・・・と2ずつ大きくなるので連続する2つの奇数はx, x+2と表せる。
文章題 2けたの自然数 ≫一の位の数と十の位の数との和が12となる2けたの自然数がある。この自然数の十の位と一の位の数を入れ替えた数はもとの数より18大きくなる。もとの2けたの自然数を求めよ。
一の位の数をxとする。
x+10(12-x)+18=10x+12-x
【答】57
【解説】一の位と十の位の和が12なので、一の位がxなら十の位は(12-x)である。
2けたの自然数はx + 10(12-x)となり、一の位と十の位を入れ替えると10x + (12-x)となる。
文章題 過不足の問題 ≫あるクラスでクラス会をする。一人1500円ずつ集めると6600円足りない。一人2000円ずつ集めると8400円あまる。生徒の人数を求めよ。
生徒の人数をx人とする。
1500x+6600=2000x-8400
【答】30人
【解説】※「配る」ときと、この問題のように「集める」ときで「あまる」「足りない」の表し方が逆になることに注意。
1500円ずつあつめて6600円足りないので、集めた1500xにさらに6600円足して目標金額に達する。つまり目標金額は1500x+6600である。
また、2000円ずつ集めて8400円余るので、2000xから余った8400円を引くと目標額になる。つまり2000x-8400が目標金額である。
1500x+6600と2000x-8400はともに目標金額を表しているので=(等号)で結んで方程式となる。
文章題 平均点の問題 ≫39人のクラスで男子18人の平均点が80点、クラス全体の平均点が73点でした。女子の平均点を求めよ。
女子の平均点をx点とする。
80×18+21x=73×39
【答】67点
【解説】平均点×人数 = 合計点なので
男子女子クラス
人数201535
平均点x7167
合計点20x71×1567×35
男子の合計点+女子の合計点 = クラスの合計点 から方程式をつくる。
文章題 速さ 追いつく1 ≫花子さんが家をでて毎分75mで歩いていった。その6分後に母が毎分100mで花子さんを追いかけた。母が花子さんに追いつくのは花子さんが家を出てから何分後か。
花子さんが家を出てからの時間をx分とする。
75x=100(x-6)
【答】24分後 
【解説】花子さんが家を出てからの時間をx分とすると、母は6分後に家を出ているので、母の時間は花子さんより6分短い(x-6)分である。道のり=時間×速さなので
花子
速さ(m/分)75100
時間(分)xx-6
道のり(m)75x100(x-6)
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。
文章題 速さ 往復 ≫A町からB町を往復した。行きは毎時4㎞で帰りは毎時3㎞で歩いたら、帰りのほうが13分多くかかった。行きにかかった時間は何分か。
行きにかかった時間をx分とする。
x60=3×x+1360
【答】39分
【解説】行きの時間をx分とすると帰りの時間は(x+13)分、速さが毎時kmで表されているので分を時間に直すと, x分はx60時間, (x+13)分は x+1360 時間である。道のり =時間×速さなので
 行き帰り
速さ(km/時)43
時間(時間)x60x+1360
道のり(km)x60x+1360
往復は行きと帰りの道のりが同じなので 行きの道のり=帰りの道のり で式をつくる。
文章題 速さが変わる問題 ≫A君が家から1200m離れた駅まで行った。家から途中の公園までは8分かかった。公園から駅までは速さを毎分10m遅くしたら12分かかった。家から公園まで歩いた速さは毎分何mか。
家から公園までを毎分xmで歩いたとする。
8x+12(x-10)=1200
【答】毎分66m
文章題 池の周り ≫湖の周りに1周4800mの道がある。たかし君とひろこさんが自転車で回る。たかし君の速さは時速15km, ひろこさんの速さは時速9kmである。二人が同時に同じ場所から出発して反対方向に回る場合、二人がはじめて出会うのは出発から何分後か。
出発してからの時間をx分とする。
250x+150x=4800
【答】12分後
【解説】求める時間の単位を分にすると,速さの単位も時速kmから分速mに直す必要がある。時速15kmは15×1000÷60=250 分速250m, 時速9kmは9×1000÷60=150 分速150mである。
反対方向に回る場合, 二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
道のり=速さ×時間なので
たかし君の走った道のり = 250x
ひろこさんの走った道のり = 150x
これらの和が1周の道のりに等しいので
250x+150x=4800
これを解くとx=12
文章題 割合 ≫ある中学校の全生徒数は495人である。女子の人数が男子の人数の98%のとき、この中学校の女子の人数を求めよ。
男子の人数をx人とする
x+98100x=495
【答】245人
【解説】割合98%が男子の人数をもとにしているので、求めるものは女子でも男子の人数をxとして方程式をたてる。女子の人数は(495-x)人なので
方程式を解いて出た解x=250 をもちいて 495-250 =245 が答えになる。
文章題 割引・割増 ≫原価900円の商品に定価をつけて、定価の4割引きで売ってもまだ原価の25%の利益があるようにしたい。定価をいくらにすればよいか。
定価をx円とする
610x=125100×900
【答】1875円
文章題 濃度 ≫ 濃度のわからない食塩水Aと11%の食塩水Bがある。Aを100gとBを300g混ぜたら10%の食塩水になった。食塩水Aの濃度を求めよ。 【式】食塩水Aの濃度をx%とする。
 x+33=40
【答】7%
解答 表示
小さい方の奇数をxとする。
x+(x+2)=140
【答】69,71
【解説】奇数は1,3,5,7・・・と2ずつ大きくなるので連続する2つの奇数はx, x+2と表せる。
一の位の数をxとする。
x+10(12-x)+18=10x+12-x
【答】57
【解説】一の位と十の位の和が12なので、一の位がxなら十の位は(12-x)である。
2けたの自然数はx + 10(12-x)となり、一の位と十の位を入れ替えると10x + (12-x)となる。
生徒の人数をx人とする。
1500x+6600=2000x-8400
【答】30人
【解説】※「配る」ときと、この問題のように「集める」ときで「あまる」「足りない」の表し方が逆になることに注意。
1500円ずつあつめて6600円足りないので、集めた1500xにさらに6600円足して目標金額に達する。つまり目標金額は1500x+6600である。
また、2000円ずつ集めて8400円余るので、2000xから余った8400円を引くと目標額になる。つまり2000x-8400が目標金額である。
1500x+6600と2000x-8400はともに目標金額を表しているので=(等号)で結んで方程式となる。
女子の平均点をx点とする。
80×18+21x=73×39
【答】67点
【解説】平均点×人数 = 合計点なので
男子女子クラス
人数201535
平均点x7167
合計点20x71×1567×35
男子の合計点+女子の合計点 = クラスの合計点 から方程式をつくる。
花子さんが家を出てからの時間をx分とする。
75x=100(x-6)
【答】24分後 
【解説】花子さんが家を出てからの時間をx分とすると、母は6分後に家を出ているので、母の時間は花子さんより6分短い(x-6)分である。道のり=時間×速さなので
花子
速さ(m/分)75100
時間(分)xx-6
道のり(m)75x100(x-6)
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。
行きにかかった時間をx分とする。
x60=3×x+1360
【答】39分
【解説】行きの時間をx分とすると帰りの時間は(x+13)分、速さが毎時kmで表されているので分を時間に直すと, x分はx60時間, (x+13)分は x+1360 時間である。道のり =時間×速さなので
 行き帰り
速さ(km/時)43
時間(時間)x60x+1360
道のり(km)x60x+1360
往復は行きと帰りの道のりが同じなので 行きの道のり=帰りの道のり で式をつくる。
家から公園までを毎分xmで歩いたとする。
8x+12(x-10)=1200
【答】毎分66m
出発してからの時間をx分とする。
250x+150x=4800
【答】12分後
【解説】求める時間の単位を分にすると,速さの単位も時速kmから分速mに直す必要がある。時速15kmは15×1000÷60=250 分速250m, 時速9kmは9×1000÷60=150 分速150mである。
反対方向に回る場合, 二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
道のり=速さ×時間なので
たかし君の走った道のり = 250x
ひろこさんの走った道のり = 150x
これらの和が1周の道のりに等しいので
250x+150x=4800
これを解くとx=12
男子の人数をx人とする
x+98100x=495
【答】245人
【解説】割合98%が男子の人数をもとにしているので、求めるものは女子でも男子の人数をxとして方程式をたてる。女子の人数は(495-x)人なので
方程式を解いて出た解x=250 をもちいて 495-250 =245 が答えになる。
定価をx円とする
610x=125100×900
【答】1875円
【式】食塩水Aの濃度をx%とする。
 x+33=40
【答】7%
© 2006- 2022 SyuwaGakuin All Rights Reserved pc