答表示

中1 方程式の利用 演習

文章題 連続する整数 ≫連続する2つの整数があり、その和は25である。この2つの整数を求めよ。
小さい方の整数をxとする。
x+(x+1)=25
【答】12,13
【解説】整数は1ずつ大きくなるので、xの次はx+1である。よって連続する2つの自然数はxとx+1と表せる。
文章題 2けたの自然数 ≫一の位の数が十の位の数のちょうど4倍になるような2けたの自然数がある。この2けたの自然数の一の位と十の位の数を入れ替えた数はもとの自然数より54大きくなる。もとの2けたの自然数を求めよ。
十の位の数をxとする。
40x+x-(4x+10x)=54
【答】28
【解説】一の位が十の位の4倍なので十の位の数をxとすると一の位は4xとなる。すると2けたの自然数は4x+10x、一の位と十の位を入れ替えた数は40x+xとなる。
文章題 過不足の問題 ≫あるクラスでクラス会をする。一人1500円ずつ集めると6600円足りない。一人2000円ずつ集めると8400円あまる。生徒の人数を求めよ。
生徒の人数をx人とする。
1500x+6600=2000x-8400
【答】30人
【解説】※「配る」ときと、この問題のように「集める」ときで「あまる」「足りない」の表し方が逆になることに注意。
1500円ずつあつめて6600円足りないので、集めた1500xにさらに6600円足して目標金額に達する。つまり目標金額は1500x+6600である。
また、2000円ずつ集めて8400円余るので、2000xから余った8400円を引くと目標額になる。つまり2000x-8400が目標金額である。
1500x+6600と2000x-8400はともに目標金額を表しているので=(等号)で結んで方程式となる。
文章題 平均点の問題 ≫32人のクラスがある。男子の平均点が60点、女子の平均点が68点で、クラス全体の平均点が64.5点だった。男子の人数を求めよ。
男子の人数をx人とする。
60x+68(32-x)=64.5×32
【答】14人
【解説】32人のクラスで、男子の人数がx人なら、女子の人数は(32-x)人と表せる。また、平均点×人数=合計点なので
男子女子クラス
人数x32-x32
平均点606864.5
合計点60x68(32-x)64.5×32
男子の合計点 + 女子の合計点 = クラスの合計点 から方程式をつくる
文章題 速さ 追いつく1 ≫花子さんが家をでて毎分45mで歩いていった。その10分後に母が毎分120mで花子さんを追いかけた。母が花子さんに追いつくのは花子さんが家を出てから何分後か。
花子さんが家を出てからの時間をx分とする。
45x=120(x-10)
【答】16分後 
【解説】花子さんが家を出てからの時間をx分とすると、母は10分後に家を出ているので、母の時間は花子さんより10分短い(x-10)分である。道のり=時間×速さなので
花子
速さ(m/分)45120
時間(分)xx-10
道のり(m)45x120(x-10)
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。
文章題 速さ 往復 ≫A地点とB地点の間を自転車で往復した。行きは毎分240m、帰りは毎分180mで走ったら帰りのほうが15分多くかかった。AB間の道のりは何mか。
AB間の道のりをxmとする。
x180-x240=15
【答】10800m
【解説】往復では行きと帰りの道のりが同じなので、両方x ,時間 =道のり÷速さなので
 行き帰り
速さ(m/分)240180
時間(分)x240x180
道のり(m)xx
帰りのほうが15分長いので 帰りの時間 – 行きの時間 =15となる
文章題 速さが変わる問題 ≫太郎君の家から花子さんの家まで行く途中に公園がある。太郎君の家から公園までの距離は花子さんの家から公園までの距離より150m近い。ある日太郎君が花子さんの家まで行った。太郎君は自分の家から公園まで毎分80mで歩き、公園から花子さんの家までは毎分60mで歩いた。全部で27分かかった。太郎君の家から公園までは何mか。
太郎君の家から公園までの道のりをxmとする。
x80+x+15060=27
【答】840m
【解説】太郎家から公園をxmとすると花子家から公園はそれより150m遠いので(x+150)m、時間=道のり÷速さなので
 太郎家〜公園公園〜花子家
速さ(m/分)8060
時間(分)x80x+15060
道のり(m)xx+150
時間の合計が27分を使って式をつくる。
文章題 池の周り ≫池の周りに1周800mの道がある。兄と妹が同時に同じ場所から出発して同じ方向に歩く。兄は分速96m, 妹は分速64mの場合、はじめて兄が妹を追い越すのは出発から何分後か。
出発してからの時間をx分とする。
96x-64x=800
【答】25分後
【解説】同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
この場合,兄と妹の歩いた道のりの差が800mになったときである。
道のり=速さ×時間なので
兄の歩いた道のり = 96x
妹の歩いた道のり=64x
これらの差が1周分なので
96x-64x=800
これを解くと
x=25
文章題 割合 ≫姉と弟がアメを持っている。姉は弟に比べて12個多く持っていた。姉が弟に自分のアメの15%をあげたので二人のアメの数がちょうど同じになった。 アメは全部で何個あったか。
姉が持っていたアメをx個とする。
85100x=15100x+x-12
【答】68個
【解説】求めるものは全部のアメの数だが、割合15%のもとになる数が姉がはじめに持っていた数なのでそれをxにする。
はじめxx-12
移動- 15100x+ 15100x
あとx- 15100 xx-12 + 15100x
文章題 割引・割増 ≫原価800円の商品に定価をつけて、定価の3割引きで売ってもまだ原価の4割の利益があるようにしたい。定価をいくらにすればよいか。
定価をx円とする
710x=800×1410
【答】1600円
文章題 濃度 ≫定価800円の商品を定価の1割引で売ったが、まだ原価の44%の利益があった。この商品の原価を求めよ。
原価をx円とする
800×910=144100x
【答】500円
解答 表示
小さい方の整数をxとする。
x+(x+1)=25
【答】12,13
【解説】整数は1ずつ大きくなるので、xの次はx+1である。よって連続する2つの自然数はxとx+1と表せる。
十の位の数をxとする。
40x+x-(4x+10x)=54
【答】28
【解説】一の位が十の位の4倍なので十の位の数をxとすると一の位は4xとなる。すると2けたの自然数は4x+10x、一の位と十の位を入れ替えた数は40x+xとなる。
生徒の人数をx人とする。
1500x+6600=2000x-8400
【答】30人
【解説】※「配る」ときと、この問題のように「集める」ときで「あまる」「足りない」の表し方が逆になることに注意。
1500円ずつあつめて6600円足りないので、集めた1500xにさらに6600円足して目標金額に達する。つまり目標金額は1500x+6600である。
また、2000円ずつ集めて8400円余るので、2000xから余った8400円を引くと目標額になる。つまり2000x-8400が目標金額である。
1500x+6600と2000x-8400はともに目標金額を表しているので=(等号)で結んで方程式となる。
男子の人数をx人とする。
60x+68(32-x)=64.5×32
【答】14人
【解説】32人のクラスで、男子の人数がx人なら、女子の人数は(32-x)人と表せる。また、平均点×人数=合計点なので
男子女子クラス
人数x32-x32
平均点606864.5
合計点60x68(32-x)64.5×32
男子の合計点 + 女子の合計点 = クラスの合計点 から方程式をつくる
花子さんが家を出てからの時間をx分とする。
45x=120(x-10)
【答】16分後 
【解説】花子さんが家を出てからの時間をx分とすると、母は10分後に家を出ているので、母の時間は花子さんより10分短い(x-10)分である。道のり=時間×速さなので
花子
速さ(m/分)45120
時間(分)xx-10
道のり(m)45x120(x-10)
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。
AB間の道のりをxmとする。
x180-x240=15
【答】10800m
【解説】往復では行きと帰りの道のりが同じなので、両方x ,時間 =道のり÷速さなので
 行き帰り
速さ(m/分)240180
時間(分)x240x180
道のり(m)xx
帰りのほうが15分長いので 帰りの時間 – 行きの時間 =15となる
太郎君の家から公園までの道のりをxmとする。
x80+x+15060=27
【答】840m
【解説】太郎家から公園をxmとすると花子家から公園はそれより150m遠いので(x+150)m、時間=道のり÷速さなので
 太郎家〜公園公園〜花子家
速さ(m/分)8060
時間(分)x80x+15060
道のり(m)xx+150
時間の合計が27分を使って式をつくる。
出発してからの時間をx分とする。
96x-64x=800
【答】25分後
【解説】同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
この場合,兄と妹の歩いた道のりの差が800mになったときである。
道のり=速さ×時間なので
兄の歩いた道のり = 96x
妹の歩いた道のり=64x
これらの差が1周分なので
96x-64x=800
これを解くと
x=25
姉が持っていたアメをx個とする。
85100x=15100x+x-12
【答】68個
【解説】求めるものは全部のアメの数だが、割合15%のもとになる数が姉がはじめに持っていた数なのでそれをxにする。
はじめxx-12
移動- 15100x+ 15100x
あとx- 15100 xx-12 + 15100x
定価をx円とする
710x=800×1410
【答】1600円
原価をx円とする
800×910=144100x
【答】500円
© 2006- 2022 SyuwaGakuin All Rights Reserved pc