中央のの整数をxとする。
(x-1)+x+(x+1)=45
【答】14,15,16
【解説】整数は1ずつ大きくなるので、xの次はx+1、xの前はx-1である。よって連続する3つの自然数はx-1, x, x+1と表せる。
一の位の数をxとする。
x+10(13-x)+45=10x+13-x
【答】49
【解説】一の位と十の位の和が13なので、一の位がxなら十の位は(13-x)である。
2けたの自然数はx + 10(13-x)となり、一の位と十の位を入れ替えると10x + (13-x)となる。
子供の人数をx人とする
8x+11=9x-10
【答】21人
【解説】子供の数をxとして、折り紙の全枚数を2通りで表す。一人の 枚数 | 6 | 7 |
人数 | x | x |
配る数 | 6x | 7x |
過不足 | +8 | -10 |
折り紙の 全枚数 | 6x+8 | 7x-10 |
4枚ずつ配って8枚あまっているので、折り紙の全枚数を表すと4x+8、5枚配ろうとして10枚足りないので、5x-10が全枚数である。折り紙の全枚数は同じものを表しているので=(等号)でつなげば方程式になる。 男子の人数をx人とする。
72x+80(x+18)=76.5(2x+18)
【答】63人
【解説】
兄が家を出てからx分後に追いつくとする。
55(x+4)=75x
【答】11分後
【解説】兄が家を出てからの時間をx分とすると、兄は太郎くんの4分後に家を出ているので太郎くんの時間は兄より4分長い(x+4)分である。道のり=時間×速さなので | 太郎 | 兄 |
速さ(m/分) | 55 | 75 |
時間(分) | x+4 | x |
道のり(m) | 55(x+4) | 75x |
追いつくときは、道のりが同じなので
太郎の歩いた道のり = 兄の歩いた道のり で式をつくる。
行きにかかった時間をx分とする。
70x=60(x+8)
【答】48分
【解説】行きの時間をx分とすると帰りの時間は(x+8)分、道のり =時間×速さなので | 行き | 帰り |
速さ(m/分) | 70 | 60 |
時間(分) | x | x+8 |
道のり(m) | 70x | 60(x+8) |
往復は行きと帰りの道のりが同じなので 行きの道のり=帰りの道のり で式をつくる。 家を出てx分後に速さを変えたとする。
75x+55(60-x)=4000
【答】35分後
B君の速さを毎分xmとする。
252(x+32)+252x=1754(x+32)-1754x
【答】A君毎分72m, B君毎分40m
【解説】A君はB君より毎分32mだけ速いので,A君の速さは毎分(x+32)m
反対方向に回る場合,二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
12分30秒を分に直すと12+3060=252分なので
道のり=速さ×時間より
252(x+32)+252x=1周の道のり
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
43分45秒を分に直すと43+4560=1754分なので
1754(x+32)-1754x=1周のみちのり
252(x+32)+252xと1754(x+32)-1754xはともに1周の道のりを表すので=で結ぶと
252(x+32)+252x=1754(x+32)-1754x
これを解くとx=40これがB君の速さなのでA君の速さは40+32=72
部活全体の人数をx人とする
60100x-40100x=7
【答】35人
【解説】部活全体の人数をx人とすると1年生は全体の40%なので 40100x, 2年生と3年生の合計は 60100x, 1年生が2・3年生合計より7人少ないので2・3年生合計 - 1年生 =7 で方程式を作る。
原価をx円とする
1610x-240=1410x
【答】1200円
【解説】原価をx円とすると原価の6割の利益を見込んでつけた定価は1610x円である。そこから240円引きで売った売値は(1610x-240)円となる。
また、原価の4割の利益になったとの記述から売値は 1410xとも表せる。2通りであらわした売値を=で結んで式をつくる。
【式】6%の食塩水をxg混ぜるとする。
2+6100x+10100(400-x)=30
【答】6%が300g, 10%が100g