小さい方の奇数をxとする。
x+(x+2)=56
【答】27,29
【解説】奇数は1,3,5,7・・・と2ずつ大きくなるので連続する2つの奇数はx, x+2と表せる。
一の位の数をxとする。
x+10(x-4)+10x+x-4=110
【答】37
【解説】一の位が十の位より4大きいので、一の位がxなら十の位は(x-4)である。
2けたの自然数はx + 10(x-4)となり、一の位と十の位を入れ替えると10x + (x-4)となる。
クラスの人数をx人とする。
400x+900=500x-1700
【答】26人
【解説】クラスの人数をx人とすると、一人400円ずつだと400x円集まるが、900円足りないので、400x+900が記念品の値段である。
また、500円ずつ集めた500xでは1700円あまるので、500x-1700が記念品の値段となる。
2通りで表した記念品の値段を=(等号)で結んで方程式とする。
女子の人数をx人とする。
134.1x+160(37-x)=146×37
【答】20人
【解説】32人のクラスで、男子の人数がx人なら、女子の人数は(32-x)人と表せる。また、平均点×人数=合計点なので| | 男子 | 女子 | クラス |
| 人数 | x | 32-x | 32 |
| 平均点 | 60 | 68 | 64.5 |
| 合計点 | 60x | 68(32-x) | 64.5×32 |
男子の合計点 + 女子の合計点 = クラスの合計点 から方程式をつくる 花子さんが家を出てからの時間をx分とする。
45x=120(x-10)
【答】16分後
【解説】花子さんが家を出てからの時間をx分とすると、母は10分後に家を出ているので、母の時間は花子さんより10分短い(x-10)分である。道のり=時間×速さなので| | 花子 | 母 |
| 速さ(m/分) | 45 | 120 |
| 時間(分) | x | x-10 |
| 道のり(m) | 45x | 120(x-10) |
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。 行きの速さを毎分xmとする。
45x=60(x-50)
【答】毎分200m
【解説】帰りは行きより毎分50m遅いので、行きの速さをxm/分とすると帰りは(x-50)m/分となる。道のり=時間×速さなので| | 行き | 帰り |
| 速さ(m/分) | x | x-50 |
| 時間(分) | 45 | 60 |
| 道のり(m) | 45x | 60(x-50) |
往復は行きと帰りの道のりが同じなので 行きの道のり = 帰りの道のりで式ができる。 ひろし君の家から公園までの道のりをxmとする。
x80=1400-x75+2
【答】800m
出発してからの時間をx時間とする。
12x+8x=40
【答】2時間後
【解説】反対方向に回る場合, 二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
道のり=速さ×時間なので
兄の走った道のり = 12x
弟の走った道のり = 8x
これらの和が1周の道のりに等しいので
12x+8x=40
これを解くとx=2
全男子数をx人とする
310x+210(460-x)=116
【答】240人
【解説】全男子数をx人とすると、全女子数は(460-x)人である。
自転車通学の男子は310x、女子は210(460-x)となる。
これらの合計が116となることから方程式をつくる。
定価をx円とする
610x=125100×900
【答】1875円
【式】食塩水Aの濃度をx%とする。
x+33=40
【答】7%