中央のの整数をxとする。
(x-1)+x+(x+1)=15
【答】4,5,6
【解説】整数は1ずつ大きくなるので、xの次はx+1、xの前はx-1である。よって連続する3つの自然数はx-1, x, x+1と表せる。
一の位の数をxとする。
x+10(7-x)+9=10x+7-x
【答】34
【解説】一の位と十の位の和が7なので、一の位がxなら十の位は(7-x)である。
2けたの自然数はx + 10(7-x)となり、一の位と十の位を入れ替えると10x + (7-x)となる。
生徒の人数をx人とする
4x+10=6x-8
【答】9人,78
【解説】子供の数をxとして、折り紙の全枚数を2通りで表す。一人の 枚数 | 6 | 7 |
| 人数 | x | x |
| 配る数 | 6x | 7x |
| 過不足 | +8 | -10 |
折り紙の 全枚数 | 6x+8 | 7x-10 |
4枚ずつ配って8枚あまっているので、折り紙の全枚数を表すと4x+8、5枚配ろうとして10枚足りないので、5x-10が全枚数である。折り紙の全枚数は同じものを表しているので=(等号)でつなげば方程式になる。 男子の人数をx人とする。
60x+68(32-x)=64.5×32
【答】14人
【解説】32人のクラスで、男子の人数がx人なら、女子の人数は(32-x)人と表せる。また、平均点×人数=合計点なので| | 男子 | 女子 | クラス |
| 人数 | x | 32-x | 32 |
| 平均点 | 60 | 68 | 64.5 |
| 合計点 | 60x | 68(32-x) | 64.5×32 |
男子の合計点 + 女子の合計点 = クラスの合計点 から方程式をつくる 花子さんが家を出てからの時間をx分とする。
45x=120(x-10)
【答】16分後
【解説】花子さんが家を出てからの時間をx分とすると、母は10分後に家を出ているので、母の時間は花子さんより10分短い(x-10)分である。道のり=時間×速さなので| | 花子 | 母 |
| 速さ(m/分) | 45 | 120 |
| 時間(分) | x | x-10 |
| 道のり(m) | 45x | 120(x-10) |
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。 行きにかかった時間をx分とする。
4×x60=3×x+1360
【答】39分
【解説】行きの時間をx分とすると帰りの時間は(x+13)分、速さが毎時kmで表されているので分を時間に直すと, x分はx60時間, (x+13)分は x+1360 時間である。道のり =時間×速さなので| | 行き | 帰り |
| 速さ(km/時) | 4 | 3 |
| 時間(時間) | x60 | x+1360 |
| 道のり(km) | 4×x60 | 3×x+1360 |
往復は行きと帰りの道のりが同じなので 行きの道のり=帰りの道のり で式をつくる。 A町からB町までの道のりをxkmとする。
x4+x+0.73.5=46260
【答】14km
出発してからの時間をx分とする。
60x-40x=2000
【答】100分後
【解説】求める時間を分にすると,速さの単位を時速kmから分速mに直す必要がある。時速3.6kmは3.6×1000÷60=60 分速60m,時速2.4kmは2.4×1000÷60=40 分速40m
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
この場合,姉と弟の歩いた道のりの差が2000mになったときである。
道のり=速さ×時間なので
姉の歩いた道のり =60x
弟の歩いた道のり= 40x
これらの差が1周分なので
60x-40x=2000
これを解くと
x=100
全男子数をx人とする
15100x-8100(710-x)=26
【答】360人
【解説】全男子数をx人とすると、全女子数は(710-x)人となる。
自転車通学の男子は15100x、女子は8100(710-x)となる。
自転車通学の人数は男子が女子より26人多いので、「自転車通学の男子」-「自転車通学の女子」=26で方程式をつくる。
原価をx円とする
1510x-700=x+100
【答】1600円
【解説】原価をx円とすると、原価の5割の利益を見込んでつけた定価は1510x円である。
売値はここから700円引いたものなので、(1510x-700)円となる。
売値 = 原価+利益 から式をつくる
原価をx円とする
610×1710x=x+10
【答】500円
【解説】原価をx円とすると、原価の7割の利益を見込んだ定価は1710x円である。この定価の4割引きの売値は1710x× 610 円となる。
売値 = 原価+利益 から式をつくる。