小さい方の整数をxとする。
x+(x+1)=25
【答】12,13
【解説】整数は1ずつ大きくなるので、xの次はx+1である。よって連続する2つの自然数はxとx+1と表せる。
十の位の数をxとする。
40x+x-(4x+10x)=54
【答】28
【解説】一の位が十の位の4倍なので十の位の数をxとすると一の位は4xとなる。すると2けたの自然数は4x+10x、一の位と十の位を入れ替えた数は40x+xとなる。
生徒の人数をx人とする。
1500x+6600=2000x-8400
【答】30人
【解説】※「配る」ときと、この問題のように「集める」ときで「あまる」「足りない」の表し方が逆になることに注意。
1500円ずつあつめて6600円足りないので、集めた1500xにさらに6600円足して目標金額に達する。つまり目標金額は1500x+6600である。
また、2000円ずつ集めて8400円余るので、2000xから余った8400円を引くと目標額になる。つまり2000x-8400が目標金額である。
1500x+6600と2000x-8400はともに目標金額を表しているので=(等号)で結んで方程式となる。
男子の人数をx人とする。
60x+68(32-x)=64.5×32
【答】14人
【解説】32人のクラスで、男子の人数がx人なら、女子の人数は(32-x)人と表せる。また、平均点×人数=合計点なので| | 男子 | 女子 | クラス |
| 人数 | x | 32-x | 32 |
| 平均点 | 60 | 68 | 64.5 |
| 合計点 | 60x | 68(32-x) | 64.5×32 |
男子の合計点 + 女子の合計点 = クラスの合計点 から方程式をつくる 花子さんが家を出てからの時間をx分とする。
45x=120(x-10)
【答】16分後
【解説】花子さんが家を出てからの時間をx分とすると、母は10分後に家を出ているので、母の時間は花子さんより10分短い(x-10)分である。道のり=時間×速さなので| | 花子 | 母 |
| 速さ(m/分) | 45 | 120 |
| 時間(分) | x | x-10 |
| 道のり(m) | 45x | 120(x-10) |
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。 AB間の道のりをxmとする。
x180-x240=15
【答】10800m
【解説】往復では行きと帰りの道のりが同じなので、両方x ,時間 =道のり÷速さなので| | 行き | 帰り |
| 速さ(m/分) | 240 | 180 |
| 時間(分) | x240 | x180 |
| 道のり(m) | x | x |
帰りのほうが15分長いので 帰りの時間 – 行きの時間 =15となる 太郎君の家から公園までの道のりをxmとする。
x80+x+15060=27
【答】840m
【解説】太郎家から公園をxmとすると花子家から公園はそれより150m遠いので(x+150)m、時間=道のり÷速さなので| | 太郎家〜公園 | 公園〜花子家 |
| 速さ(m/分) | 80 | 60 |
| 時間(分) | x80 | x+15060 |
| 道のり(m) | x | x+150 |
時間の合計が27分を使って式をつくる。 出発してからの時間をx分とする。
96x-64x=800
【答】25分後
【解説】同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
この場合,兄と妹の歩いた道のりの差が800mになったときである。
道のり=速さ×時間なので
兄の歩いた道のり = 96x
妹の歩いた道のり=64x
これらの差が1周分なので
96x-64x=800
これを解くと
x=25
姉が持っていたアメをx個とする。
85100x=15100x+x-12
【答】68個
【解説】求めるものは全部のアメの数だが、割合15%のもとになる数が姉がはじめに持っていた数なのでそれをxにする。
| | 姉 | 弟 |
| はじめ | x | x-12 |
| 移動 | - 15100x | + 15100x |
| あと | x- 15100 x | x-12 + 15100x |
定価をx円とする
710x=800×1410
【答】1600円
原価をx円とする
800×910=144100x
【答】500円