答表示

中1 方程式の利用 演習

文章題 連続する整数 ≫連続する2つの奇数があり、その和は56である。この2つの奇数を求めよ。
小さい方の奇数をxとする。
x+(x+2)=56
【答】27,29
【解説】奇数は1,3,5,7・・・と2ずつ大きくなるので連続する2つの奇数はx, x+2と表せる。
文章題 2けたの自然数 ≫十の位の数が一の位の数の3倍より1小さい2けたの自然数がある。この2けたの自然数の一の位と十の位を入れ替えた数をもとの自然数にたすと121になる。もとの2けたの自然数を求めよ。
一の位の数をxとする。
x+10(3x-1)+3x-1+10x=121
【答】38
【解説】十の位の数が一の位の数の3倍より1小さいので一の位の数をxとすると十の位の数は3x-1となる。2けたの自然数はx+10(3x-1)、一の位と十の位の数を入れ替えると 3x-1+10xとなる。
文章題 過不足の問題 ≫クラス全員でお金を出し合って記念品を買う。一人200円ずつ集めると300円足りない、一人250円ずつ集めると950円あまる。記念品の値段を求めよ。
クラスの生徒数をx人とする。
200x+300=250x-950
【答】5300円
【解説】求めるのは記念品の値段だが、人数をxとしたほうが式をたてるのが容易になる。
一人200円ずつで300円足りないので、記念品の値段は200x+300となる。
また、一人250円ずつで650円あまるので、記念品の値段は250x-650となる。
2通りで表した値段を=(等号)で結ぶと 200x+300=250x-950 これを解くとx=25
求めるものは記念品の値段なのでx=25を200x+300に代入すると200×25+300=5300
文章題 平均点の問題 ≫ある学校の1年生は女子より男子のほうが18人少ない。1年生全体の平均点が76.5点、男子の平均点が72点、女子の平均点が80点だった。男子の人数を求めよ。
男子の人数をx人とする。
72x+80(x+18)=76.5(2x+18)
【答】63人
【解説】
文章題 速さ 追いつく1 ≫花子さんが家をでて毎分45mで歩いていった。その10分後に母が毎分120mで花子さんを追いかけた。母が花子さんに追いつくのは花子さんが家を出てから何分後か。
花子さんが家を出てからの時間をx分とする。
45x=120(x-10)
【答】16分後 
【解説】花子さんが家を出てからの時間をx分とすると、母は10分後に家を出ているので、母の時間は花子さんより10分短い(x-10)分である。道のり=時間×速さなので
花子
速さ(m/分)45120
時間(分)xx-10
道のり(m)45x120(x-10)
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。
文章題 速さ 往復 ≫A地点とB地点の間を往復した。行きは毎分70m、帰りは毎分50mで歩いたら帰りのほうが18分多くかかった。AB間の道のりは何mか。
AB間の道のりをxmとする。
x50-x70=18
【答】3150m
【解説】往復では行きと帰りの道のりが同じなので、両方x ,時間 =道のり÷速さなので
 行き帰り
速さ(m/分)7050
時間(分)x70x50
道のり(m)xx
帰りのほうが18分長いので 帰りの時間 – 行きの時間 =18
文章題 速さが変わる問題 ≫たかし君の家からよしこさんの家まで1300mあり、途中に公園がある。ある日公園で待ち合わせて二人が同時に家を出た。たかし君は毎分85m、 よしこさんは毎分65mで歩いていったらたかし君のほうが2分早く着いた。たかし君の家から公園までの道のりを求めよ。
たかしくんの家から公園までをxmとする。
x85=1300-x65-2
【答】663m
【解説】たかし家〜公園〜よしこ家が1300mなのでたかし家〜公園をxmとするとよしこ家〜公園は(1300-x)mとなる。時間=道のり÷速さなので
 たかし家
〜公園
よしこ家
〜公園
速さ(m/分)8565
時間(分)x851300-x65
道のり(m)x1300-x
たかしが2分早くついたのでたかしの時間 = よしこの時間-2である。
文章題 池の周り ≫池の周りに1周800mの道がある。兄と妹が同時に同じ場所から出発して同じ方向に歩く。兄は分速96m, 妹は分速64mの場合、はじめて兄が妹を追い越すのは出発から何分後か。
出発してからの時間をx分とする。
96x-64x=800
【答】25分後
【解説】同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
この場合,兄と妹の歩いた道のりの差が800mになったときである。
道のり=速さ×時間なので
兄の歩いた道のり = 96x
妹の歩いた道のり=64x
これらの差が1周分なので
96x-64x=800
これを解くと
x=25
文章題 割合 ≫ある中学校の全生徒数は312人である。女子の人数が男子の人数の108%のとき、この中学校の男子の人数を求めよ。
男子の人数をx人とする
x+108100x=312
【答】150人
文章題 割引・割増 ≫原価1200円の商品に定価をつけて、定価の2割引きで売ってもまだ原価の1割の利益があるようにしたい。定価をいくらにすればよいか。
定価をx円とする
810x=1110×1200
【答】1650円
文章題 濃度 ≫ 5%の食塩水200gと8%の食塩水をいくらか混ぜると6%の食塩水になった。8%の食塩水は何g混ぜたか。 【式】8%の食塩水をxgとする。
  10+8100x=6100(200+x)
【答】100g
解答 表示
小さい方の奇数をxとする。
x+(x+2)=56
【答】27,29
【解説】奇数は1,3,5,7・・・と2ずつ大きくなるので連続する2つの奇数はx, x+2と表せる。
一の位の数をxとする。
x+10(3x-1)+3x-1+10x=121
【答】38
【解説】十の位の数が一の位の数の3倍より1小さいので一の位の数をxとすると十の位の数は3x-1となる。2けたの自然数はx+10(3x-1)、一の位と十の位の数を入れ替えると 3x-1+10xとなる。
クラスの生徒数をx人とする。
200x+300=250x-950
【答】5300円
【解説】求めるのは記念品の値段だが、人数をxとしたほうが式をたてるのが容易になる。
一人200円ずつで300円足りないので、記念品の値段は200x+300となる。
また、一人250円ずつで650円あまるので、記念品の値段は250x-650となる。
2通りで表した値段を=(等号)で結ぶと 200x+300=250x-950 これを解くとx=25
求めるものは記念品の値段なのでx=25を200x+300に代入すると200×25+300=5300
男子の人数をx人とする。
72x+80(x+18)=76.5(2x+18)
【答】63人
【解説】
花子さんが家を出てからの時間をx分とする。
45x=120(x-10)
【答】16分後 
【解説】花子さんが家を出てからの時間をx分とすると、母は10分後に家を出ているので、母の時間は花子さんより10分短い(x-10)分である。道のり=時間×速さなので
花子
速さ(m/分)45120
時間(分)xx-10
道のり(m)45x120(x-10)
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。
AB間の道のりをxmとする。
x50-x70=18
【答】3150m
【解説】往復では行きと帰りの道のりが同じなので、両方x ,時間 =道のり÷速さなので
 行き帰り
速さ(m/分)7050
時間(分)x70x50
道のり(m)xx
帰りのほうが18分長いので 帰りの時間 – 行きの時間 =18
たかしくんの家から公園までをxmとする。
x85=1300-x65-2
【答】663m
【解説】たかし家〜公園〜よしこ家が1300mなのでたかし家〜公園をxmとするとよしこ家〜公園は(1300-x)mとなる。時間=道のり÷速さなので
 たかし家
〜公園
よしこ家
〜公園
速さ(m/分)8565
時間(分)x851300-x65
道のり(m)x1300-x
たかしが2分早くついたのでたかしの時間 = よしこの時間-2である。
出発してからの時間をx分とする。
96x-64x=800
【答】25分後
【解説】同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
この場合,兄と妹の歩いた道のりの差が800mになったときである。
道のり=速さ×時間なので
兄の歩いた道のり = 96x
妹の歩いた道のり=64x
これらの差が1周分なので
96x-64x=800
これを解くと
x=25
男子の人数をx人とする
x+108100x=312
【答】150人
定価をx円とする
810x=1110×1200
【答】1650円
【式】8%の食塩水をxgとする。
  10+8100x=6100(200+x)
【答】100g
© 2006- 2022 SyuwaGakuin All Rights Reserved pc