答表示

中1 方程式の利用 演習

文章題 連続する整数 ≫連続する3つの整数があり、その和は15である。この3つの整数を求めよ。
中央のの整数をxとする。
(x-1)+x+(x+1)=15
【答】4,5,6
【解説】整数は1ずつ大きくなるので、xの次はx+1、xの前はx-1である。よって連続する3つの自然数はx-1, x, x+1と表せる。
文章題 2けたの自然数 ≫一の位の数と十の位の数との和が12となる2けたの自然数がある。この自然数の十の位と一の位の数を入れ替えた数はもとの数より18大きくなる。もとの2けたの自然数を求めよ。
一の位の数をxとする。
x+10(12-x)+18=10x+12-x
【答】57
【解説】一の位と十の位の和が12なので、一の位がxなら十の位は(12-x)である。
2けたの自然数はx + 10(12-x)となり、一の位と十の位を入れ替えると10x + (12-x)となる。
文章題 過不足の問題 ≫クラス全員でお金を出し合って記念品を買う。一人300円ずつ集めると700円足りない、一人400円ずつ集めると2200円あまる。クラスの生徒数を求めよ。
クラスの人数をx人とする。
300x+700=400x-2200
【答】29人
【解説】
一人の費用300400
人数xx
集金額300x400x
過不足1200足りない1600あまる
全費用300x+700400x-2200

全費用は300x+1200と400x-2200の2通りで表せるのでこれらを=(等号)で結んで方程式にする。
文章題 平均点の問題 ≫クラス35人全体の平均点が67点、女子15人の平均点が71点でした。男子の平均点を求めよ。
男子の平均点をx点とする。
71×15+20x=67×35
【答】64点
【解説】平均点×人数 = 合計点なので
男子女子クラス
人数201535
平均点x7167
合計点20x71×1567×35
男子の合計点+女子の合計点 = クラスの合計点 から方程式をつくる。
文章題 速さ 追いつく1 ≫花子さんが家をでて毎分75mで歩いていった。その6分後に母が毎分100mで花子さんを追いかけた。母が花子さんに追いつくのは花子さんが家を出てから何分後か。
花子さんが家を出てからの時間をx分とする。
75x=100(x-6)
【答】24分後 
【解説】花子さんが家を出てからの時間をx分とすると、母は6分後に家を出ているので、母の時間は花子さんより6分短い(x-6)分である。道のり=時間×速さなので
花子
速さ(m/分)75100
時間(分)xx-6
道のり(m)75x100(x-6)
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。
文章題 速さ 往復 ≫2地点A、Bを往復する。行きは2時間かかり、帰りは行きの速さより毎時10kmだけおそくしたので2時間30分かかった。行きの速さは毎時何kmか。
行きの速さを毎時xkmとする。
2x=15060(x-10)
【答】毎時50km
【解説】帰りは行きより毎時10km遅いので、行きの速さをxkm/時とすると帰りは(x-10)km/時となる。2時間30分を時間に直すと15060時間, 道のり=時間×速さなので
 行き帰り
速さ(km/時)xx-10
時間(時間)215060
道のり(km)2x15060(x-10)
往復は行きと帰りの道のりが同じなので 行きの道のり = 帰りの道のりで式ができる。
文章題 速さが変わる問題 ≫A 君の家とB君の家は1.1㎞離れている。A君が8:00に家を出て毎分70mでB君の家へ向かいB君は8:08分に家を出て分速65mでB君の家に向かった。二人が出会うのは8時何分か。
8時x分に出会ったとする。
70x+65(x-8)=1100
【答】8時12分
【解説】A君が出会うまでに歩いた時間をx分とすると、B君は8分遅れて出発しているので歩いた時間は(x-8)分である。道のり=時間×速さなので
 AB
速さ(m/分)7065
時間(分)xx-8
道のり(m)70x65(x-8)
2人はAの家からBの家までの途中で出会うので、2人が歩いた道のりの合計が1100mである。
文章題 池の周り ≫湖の周りに1周40kmの道がある。兄と弟が自転車で回る。兄の速さは時速12km, 弟の速さは時速8kmである。二人が同時に同じ場所から出発して反対方向に回る場合、二人がはじめて出会うのは出発から何時間後か。
出発してからの時間をx時間とする。
12x+8x=40
【答】2時間後
【解説】反対方向に回る場合, 二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
道のり=速さ×時間なので
兄の走った道のり = 12x
弟の走った道のり = 8x
これらの和が1周の道のりに等しいので
12x+8x=40
これを解くとx=2
文章題 割合 ≫全校生徒460人のうち、自転車通学の割合は男子が全男子数の3割で、女子は全女子数の2割である。 自転車通学の人数は男女合わせて116人である。この学校の全男子数を求めよ。
全男子数をx人とする
310x+210(460-x)=116
【答】240人
【解説】全男子数をx人とすると、全女子数は(460-x)人である。
自転車通学の男子は310x、女子は210(460-x)となる。
これらの合計が116となることから方程式をつくる。
文章題 割引・割増 ≫ある品物を仕入れて、原価の7割の利益を見込んで定価をつけた。定価では全く売れなかったので300円引きで売った。品物1個につき120円の利益になった。原価を求めよ。
原価をx円とする
1710x-300=x+120
【答】600円
【解説】原価をx円とすると、原価の5割の利益を見込んでつけた定価は1710x円である。
売値はここから300円引いたものなので、(1710x-300)円となる。
売値 = 原価+利益から式をつくる
文章題 濃度 ≫ 濃度のわからない食塩水Aと9%の食塩水Bがある。Aを550gとBを110g混ぜたら4%の食塩水になった。食塩水Aの濃度を求めよ。 【式】食塩水Aの濃度をx%とする。
  5.5x+9.9=26.4
【答】3%
解答 表示
中央のの整数をxとする。
(x-1)+x+(x+1)=15
【答】4,5,6
【解説】整数は1ずつ大きくなるので、xの次はx+1、xの前はx-1である。よって連続する3つの自然数はx-1, x, x+1と表せる。
一の位の数をxとする。
x+10(12-x)+18=10x+12-x
【答】57
【解説】一の位と十の位の和が12なので、一の位がxなら十の位は(12-x)である。
2けたの自然数はx + 10(12-x)となり、一の位と十の位を入れ替えると10x + (12-x)となる。
クラスの人数をx人とする。
300x+700=400x-2200
【答】29人
【解説】
一人の費用300400
人数xx
集金額300x400x
過不足1200足りない1600あまる
全費用300x+700400x-2200

全費用は300x+1200と400x-2200の2通りで表せるのでこれらを=(等号)で結んで方程式にする。
男子の平均点をx点とする。
71×15+20x=67×35
【答】64点
【解説】平均点×人数 = 合計点なので
男子女子クラス
人数201535
平均点x7167
合計点20x71×1567×35
男子の合計点+女子の合計点 = クラスの合計点 から方程式をつくる。
花子さんが家を出てからの時間をx分とする。
75x=100(x-6)
【答】24分後 
【解説】花子さんが家を出てからの時間をx分とすると、母は6分後に家を出ているので、母の時間は花子さんより6分短い(x-6)分である。道のり=時間×速さなので
花子
速さ(m/分)75100
時間(分)xx-6
道のり(m)75x100(x-6)
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。
行きの速さを毎時xkmとする。
2x=15060(x-10)
【答】毎時50km
【解説】帰りは行きより毎時10km遅いので、行きの速さをxkm/時とすると帰りは(x-10)km/時となる。2時間30分を時間に直すと15060時間, 道のり=時間×速さなので
 行き帰り
速さ(km/時)xx-10
時間(時間)215060
道のり(km)2x15060(x-10)
往復は行きと帰りの道のりが同じなので 行きの道のり = 帰りの道のりで式ができる。
8時x分に出会ったとする。
70x+65(x-8)=1100
【答】8時12分
【解説】A君が出会うまでに歩いた時間をx分とすると、B君は8分遅れて出発しているので歩いた時間は(x-8)分である。道のり=時間×速さなので
 AB
速さ(m/分)7065
時間(分)xx-8
道のり(m)70x65(x-8)
2人はAの家からBの家までの途中で出会うので、2人が歩いた道のりの合計が1100mである。
出発してからの時間をx時間とする。
12x+8x=40
【答】2時間後
【解説】反対方向に回る場合, 二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
道のり=速さ×時間なので
兄の走った道のり = 12x
弟の走った道のり = 8x
これらの和が1周の道のりに等しいので
12x+8x=40
これを解くとx=2
全男子数をx人とする
310x+210(460-x)=116
【答】240人
【解説】全男子数をx人とすると、全女子数は(460-x)人である。
自転車通学の男子は310x、女子は210(460-x)となる。
これらの合計が116となることから方程式をつくる。
原価をx円とする
1710x-300=x+120
【答】600円
【解説】原価をx円とすると、原価の5割の利益を見込んでつけた定価は1710x円である。
売値はここから300円引いたものなので、(1710x-300)円となる。
売値 = 原価+利益から式をつくる
【式】食塩水Aの濃度をx%とする。
  5.5x+9.9=26.4
【答】3%
© 2006- 2022 SyuwaGakuin All Rights Reserved pc