小さい方の奇数をxとする。
x+(x+2)=20
【答】9,11
【解説】奇数は1,3,5,7・・・と2ずつ大きくなるので連続する2つの奇数はx, x+2と表せる。
一の位の数をxとする。
x+10(7-x)+9=10x+7-x
【答】34
【解説】一の位と十の位の和が7なので、一の位がxなら十の位は(7-x)である。
2けたの自然数はx + 10(7-x)となり、一の位と十の位を入れ替えると10x + (7-x)となる。
子どもの人数をx人とする。
8x+22=11x-29
【答】158個
【解説】求めるものはアメの数だが、子どもの人数をxにしたほうが式がたてやすい。
x人に8個ずつ配ると8x, 22個あまるのでアメの数は8x+22
x人に11個ずつ配ると11x, 29個足りないのでアメの数は11x-29
8x+22と11x-29はどちらもアメの数を表しているので=(等号)で結べる。
8x+22 = 11x-29
これを解くとx=17
求めるものはアメの数なので 8x+22に代入して 8×17+22=158
男子の平均点をx点とする。
18x+21(x+13)=67×39
【答】60点
【解説】男子の平均点をx点とすると女子はそれより3.7点高いので(x+3.7)点である。
平均点×人数 = 合計点なので| | 男子 | 女子 | クラス |
| 人数 | 17 | 20 | 37 |
| 平均点 | x | x+3.7 | 77 |
| 合計点 | 17x | 20(x+3.7) | 77×37 |
男子の合計点+女子の合計点 = クラスの合計点 から方程式をつくる。 兄が家を出てからx分後に追いつくとする。
55(x+4)=75x
【答】11分後
【解説】兄が家を出てからの時間をx分とすると、兄は太郎くんの4分後に家を出ているので太郎くんの時間は兄より4分長い(x+4)分である。道のり=時間×速さなので| | 太郎 | 兄 |
| 速さ(m/分) | 55 | 75 |
| 時間(分) | x+4 | x |
| 道のり(m) | 55(x+4) | 75x |
追いつくときは、道のりが同じなので
太郎の歩いた道のり = 兄の歩いた道のり で式をつくる。
行きの速さを毎時xkmとする。
2x=15060(x-10)
【答】毎時50km
【解説】帰りは行きより毎時10km遅いので、行きの速さをxkm/時とすると帰りは(x-10)km/時となる。2時間30分を時間に直すと15060時間, 道のり=時間×速さなので| | 行き | 帰り |
| 速さ(km/時) | x | x-10 |
| 時間(時間) | 2 | 15060 |
| 道のり(km) | 2x | 15060(x-10) |
往復は行きと帰りの道のりが同じなので 行きの道のり = 帰りの道のりで式ができる。
8時x分に出会ったとする。
75x+45(x-4)=2700
【答】8時24分
B君の速さを毎分xmとする。
252(x+32)+252x=1754(x+32)-1754x
【答】A君毎分72m, B君毎分40m
【解説】A君はB君より毎分32mだけ速いので,A君の速さは毎分(x+32)m
反対方向に回る場合,二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
12分30秒を分に直すと12+3060=252分なので
道のり=速さ×時間より
252(x+32)+252x=1周の道のり
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
43分45秒を分に直すと43+4560=1754分なので
1754(x+32)-1754x=1周のみちのり
252(x+32)+252xと1754(x+32)-1754xはともに1周の道のりを表すので=で結ぶと
252(x+32)+252x=1754(x+32)-1754x
これを解くとx=40これがB君の速さなのでA君の速さは40+32=72
全男子数をx人とする
15100x-8100(710-x)=26
【答】360人
【解説】全男子数をx人とすると、全女子数は(710-x)人となる。
自転車通学の男子は15100x、女子は8100(710-x)となる。
自転車通学の人数は男子が女子より26人多いので、「自転車通学の男子」-「自転車通学の女子」=26で方程式をつくる。
定価をx円とする
810x=1110×1200
【答】1650円
【式】12%の食塩水をxg混ぜたとする。
16+12100x=7100(400+x)
【答】240g