小さい方の偶数をxとする。
x+(x+2)=22
【答】10,12
【解説】偶数は2,4,6,・・・と2ずつ大きくなるので、連続する2つの偶数はx, x+2と表せる。
一の位の数をxとする。
x+10(12-x)+18=10x+12-x
【答】57
【解説】一の位と十の位の和が12なので、一の位がxなら十の位は(12-x)である。
2けたの自然数はx + 10(12-x)となり、一の位と十の位を入れ替えると10x + (12-x)となる。
子どもの人数をx人とする。
8x+22=11x-29
【答】158個
【解説】求めるものはアメの数だが、子どもの人数をxにしたほうが式がたてやすい。
x人に8個ずつ配ると8x, 22個あまるのでアメの数は8x+22
x人に11個ずつ配ると11x, 29個足りないのでアメの数は11x-29
8x+22と11x-29はどちらもアメの数を表しているので=(等号)で結べる。
8x+22 = 11x-29
これを解くとx=17
求めるものはアメの数なので 8x+22に代入して 8×17+22=158
男子の人数をx人とする。
65x+76(x-10)=70(2x-10)
【答】60人
【解説】女子より男子が2人多いので、男子がx人なら、女子は(x-2)人、クラスは(x+x-2)人である。| | 男子 | 女子 | クラス |
| 人数 | x | x-2 | 2x-2 |
| 平均点 | 65 | 73.5 | 69 |
| 合計点 | 65x | 73.5(x-2) | 69(2x-2) |
男子の合計点 + 女子の合計点 = クラスの合計点から式をつくる。 花子さんが家を出てからの時間をx分とする。
75x=100(x-6)
【答】24分後
【解説】花子さんが家を出てからの時間をx分とすると、母は6分後に家を出ているので、母の時間は花子さんより6分短い(x-6)分である。道のり=時間×速さなので| | 花子 | 母 |
| 速さ(m/分) | 75 | 100 |
| 時間(分) | x | x-6 |
| 道のり(m) | 75x | 100(x-6) |
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。 A町からB町までをx mとする。
x75+x50=40
【答】1200m
【解説】往復では行きと帰りの道のりの長さは同じなので両方xm, 時間 = 道のり÷速さなので| | 行き | 帰り |
| 速さ(m/分) | 75 | 50 |
| 時間(分) | x75 | x50 |
| 道のり(m) | x | x |
合計時間が40分なので、行きの時間+帰りの時間 =40 となる。 A町を出てx分後に速さを変えたとする。
240x+190(60-x)=12000
【答】12分後
【解説】速さの単位がm/分なので1時間は60分、12kmは12000mに直す。A〜途中までがx分とすると途中〜Bまでは(60-x)分である。道のり=時間×速さなので| | A〜途中 | 途中〜B |
| 速さ(m/分) | 240 | 190 |
| 時間(分) | x | 60-x |
| 道のり(m) | 240x | 190(60-x) |
道のりの合計が12000mを使って式をつくる。 出発してからの時間をx時間とする。
12x+8x=40
【答】2時間後
【解説】反対方向に回る場合, 二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
道のり=速さ×時間なので
兄の走った道のり = 12x
弟の走った道のり = 8x
これらの和が1周の道のりに等しいので
12x+8x=40
これを解くとx=2
全男子数をx人とする
310x+210(460-x)=116
【答】240人
【解説】全男子数をx人とすると、全女子数は(460-x)人である。
自転車通学の男子は310x、女子は210(460-x)となる。
これらの合計が116となることから方程式をつくる。
原価をx円とする
750×70100=105100x
【答】500円
【式】6%の食塩水をxg混ぜるとする。
2+6100x+10100(400-x)=30
【答】6%が300g, 10%が100g