答表示

中1 方程式の利用 演習

文章題 連続する整数 ≫連続する2つの奇数があり、その和は56である。この2つの奇数を求めよ。
小さい方の奇数をxとする。
x+(x+2)=56
【答】27,29
【解説】奇数は1,3,5,7・・・と2ずつ大きくなるので連続する2つの奇数はx, x+2と表せる。
文章題 2けたの自然数 ≫一の位の数が十の位の数のちょうど2倍になるような2けたの自然数がある。この2けたの自然数の一の位と十の位の数を入れ替えた数はもとの自然数より9大きくなる。もとの2けたの自然数を求めよ。
十の位の数をxとする。
20x+x-(2x+10x)=9
【答】12
【解説】一の位が十の位の2倍なので十の位の数をxとすると一の位は2xとなる。すると2けたの自然数は2x+10x、一の位と十の位を入れ替えた数は20x+xとなる。
文章題 過不足の問題 ≫長いすがいくつかある。生徒全員が長いす1脚に5人ずつかけることにしたら、13人の生徒がかけられなかった。そこで、1脚に6人ずつかけたら、生徒が全く座らない長いす6脚と、1人しか座らない長いすが1脚できた。長いすの数を求めよ。
長いすの数をx脚とする。
5x+13=6(x-7)+1
【答】54脚
【解説】長いすの全数をxとすると5人ずつ座ると5x人座れるが、13人が座れないので生徒数は(5x+13)と表せる。
6人ずつ座ると全く座らない長いす6脚と1人だけのいすが1脚できたので、6人座る長いすの数は(x-7)である。よって6(x-7)+1が生徒数となる。2通りで表した生徒数を=で結んで方程式とする。
文章題 平均点の問題 ≫男子16人、女子17人のクラスで身長を測ったらクラス全体の平均が158.3㎝でした。男子の平均は女子平均より3.3㎝高かった。男子の身長の平均は何㎝でしょうか。
男子の身長の平均をxcmとする。
16x+17(x-3.3)=158.3×33
【答】160cm
【解説】男子の平均点をx点とすると女子はそれより3.7点高いので(x+3.7)点である。
平均点×人数 = 合計点なので
男子女子クラス
人数172037
平均点xx+3.777
合計点17x20(x+3.7)77×37
男子の合計点+女子の合計点 = クラスの合計点 から方程式をつくる。
文章題 速さ 追いつく1 ≫花子さんが家をでて毎分75mで歩いていった。その6分後に母が毎分100mで花子さんを追いかけた。母が花子さんに追いつくのは花子さんが家を出てから何分後か。
花子さんが家を出てからの時間をx分とする。
75x=100(x-6)
【答】24分後 
【解説】花子さんが家を出てからの時間をx分とすると、母は6分後に家を出ているので、母の時間は花子さんより6分短い(x-6)分である。道のり=時間×速さなので
花子
速さ(m/分)75100
時間(分)xx-6
道のり(m)75x100(x-6)
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。
文章題 速さ 往復 ≫A町とB町を自転車で往復した。行きは毎分280m、帰りは毎分210mで走ったら、走っていた時間は帰りのほうが9分長かった。行きにかかった時間は何分か。
行きにかかった時間をx分とする。
280x=210(x+9)
【答】27分
【解説】行きの時間をx分とすると帰りの時間は(x+9)分、道のり =時間×速さなので
 行き帰り
速さ(m/分)280210
時間(分)xx+9
道のり(m)280x210(x+9)
往復は行きと帰りの道のりが同じなので 行きの道のり=帰りの道のり で式をつくる。
文章題 速さが変わる問題 ≫A君の家とB君の家は1.5㎞離れている。A君は9時に家を出てB君の家に向かった。B君は同じ道を9時5分に出てA君の家に向かった。A君が時速4㎞、B君が時速3㎞のとき二人の出会った時刻は9時何分か。
A君が家を出てからx分後に出会ったとする。
460x+360(x-5)=32
【答】9時15分
文章題 池の周り ≫池の周りに1周2kmの道がある。兄と妹が同時に同じ場所から出発して同じ方向に歩く。兄は時速4km, 妹は時速3kmの場合、はじめて兄が妹を追い越すのは出発から何時間後か。
出発してからの時間をx時間とする。
4x-3x=2
【答】2時間後
【解説】同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
この場合,兄と妹の歩いた道のりの差が2kmになったときである。
道のり=速さ×時間なので
兄の歩いた道のり = 4x
妹の歩いた道のり=3x
これらの差が1周分なので
4x-3x=2
これを解くと
x=2
文章題 割合 ≫はじめ姉がいくつかのアメを持っていた。妹は持っていなかったので、姉は自分の持っていたアメの4割を妹にあげた。姉は残ったアメのうち3個を食べ、妹がもらったアメの13を食べると姉の持っているアメの数が妹のアメの数のちょうど2倍にになった。姉がはじめに持っていたアメの数を求めよ。
はじめに姉が持っていたアメの数をx個とする。
610x-3=23×410x×2
【答】45個
【解説】姉がはじめに持っていたアメの数をx個とする。妹は0個。姉が自分の4割を妹にあげたら姉は610x, 妹は410xそこから姉は3個減らし、妹は23となる。
はじめx0移動後610x410x食後610x-323×410x
食べた後、姉のアメの数が妹の2倍なので 姉のアメの数 = 妹のアメの数×2として方程式ができる。
文章題 割引・割増 ≫ある品物を仕入れて、原価の48%の利益を見込んで定価をつけた。定価では売れなかったので900円引きで売った。品物1個につき原価の12%の利益になった。原価を求めよ。
原価をx円とする
148100x-900=112100x
【答】2500円
【解説】原価をx円とすると原価の48%の利益を見込んでつけた定価は148100x円である。そこから900円引きで売った売値は(148100x-900)円となる。
また、原価の12%の利益になったとの記述から売値は 112100xとも表せる。2通りであらわした売値を=で結んで式をつくる。
文章題 濃度 ≫ 5%の食塩水200gと8%の食塩水をいくらか混ぜると6%の食塩水になった。8%の食塩水は何g混ぜたか。 【式】8%の食塩水をxgとする。
  10+8100x=6100(200+x)
【答】100g
解答 表示
小さい方の奇数をxとする。
x+(x+2)=56
【答】27,29
【解説】奇数は1,3,5,7・・・と2ずつ大きくなるので連続する2つの奇数はx, x+2と表せる。
十の位の数をxとする。
20x+x-(2x+10x)=9
【答】12
【解説】一の位が十の位の2倍なので十の位の数をxとすると一の位は2xとなる。すると2けたの自然数は2x+10x、一の位と十の位を入れ替えた数は20x+xとなる。
長いすの数をx脚とする。
5x+13=6(x-7)+1
【答】54脚
【解説】長いすの全数をxとすると5人ずつ座ると5x人座れるが、13人が座れないので生徒数は(5x+13)と表せる。
6人ずつ座ると全く座らない長いす6脚と1人だけのいすが1脚できたので、6人座る長いすの数は(x-7)である。よって6(x-7)+1が生徒数となる。2通りで表した生徒数を=で結んで方程式とする。
男子の身長の平均をxcmとする。
16x+17(x-3.3)=158.3×33
【答】160cm
【解説】男子の平均点をx点とすると女子はそれより3.7点高いので(x+3.7)点である。
平均点×人数 = 合計点なので
男子女子クラス
人数172037
平均点xx+3.777
合計点17x20(x+3.7)77×37
男子の合計点+女子の合計点 = クラスの合計点 から方程式をつくる。
花子さんが家を出てからの時間をx分とする。
75x=100(x-6)
【答】24分後 
【解説】花子さんが家を出てからの時間をx分とすると、母は6分後に家を出ているので、母の時間は花子さんより6分短い(x-6)分である。道のり=時間×速さなので
花子
速さ(m/分)75100
時間(分)xx-6
道のり(m)75x100(x-6)
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。
行きにかかった時間をx分とする。
280x=210(x+9)
【答】27分
【解説】行きの時間をx分とすると帰りの時間は(x+9)分、道のり =時間×速さなので
 行き帰り
速さ(m/分)280210
時間(分)xx+9
道のり(m)280x210(x+9)
往復は行きと帰りの道のりが同じなので 行きの道のり=帰りの道のり で式をつくる。
A君が家を出てからx分後に出会ったとする。
460x+360(x-5)=32
【答】9時15分
出発してからの時間をx時間とする。
4x-3x=2
【答】2時間後
【解説】同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
この場合,兄と妹の歩いた道のりの差が2kmになったときである。
道のり=速さ×時間なので
兄の歩いた道のり = 4x
妹の歩いた道のり=3x
これらの差が1周分なので
4x-3x=2
これを解くと
x=2
はじめに姉が持っていたアメの数をx個とする。
610x-3=23×410x×2
【答】45個
【解説】姉がはじめに持っていたアメの数をx個とする。妹は0個。姉が自分の4割を妹にあげたら姉は610x, 妹は410xそこから姉は3個減らし、妹は23となる。
はじめx0移動後610x410x食後610x-323×410x
食べた後、姉のアメの数が妹の2倍なので 姉のアメの数 = 妹のアメの数×2として方程式ができる。
原価をx円とする
148100x-900=112100x
【答】2500円
【解説】原価をx円とすると原価の48%の利益を見込んでつけた定価は148100x円である。そこから900円引きで売った売値は(148100x-900)円となる。
また、原価の12%の利益になったとの記述から売値は 112100xとも表せる。2通りであらわした売値を=で結んで式をつくる。
【式】8%の食塩水をxgとする。
  10+8100x=6100(200+x)
【答】100g
© 2006- 2022 SyuwaGakuin All Rights Reserved pc