答表示

中1 方程式の利用 演習

文章題 連続する整数 ≫連続する3つの整数があり、その和は45である。この3つの整数を求めよ。
中央のの整数をxとする。
(x-1)+x+(x+1)=45
【答】14,15,16
【解説】整数は1ずつ大きくなるので、xの次はx+1、xの前はx-1である。よって連続する3つの自然数はx-1, x, x+1と表せる。
文章題 2けたの自然数 ≫一の位の数が十の位の数より7大きい2けたの自然数がある。この自然数の一の位の数と十の位の数を入れ替えた数をもとの数にたすと99になる。もとの自然数を求めよ。
一の位の数をxとする。
x+10(x-7)+10x+x-7=99
【答】18
【解説】一の位が十の位より7大きいので、一の位がxなら十の位は(x-7)である。
2けたの自然数はx + 10(x-7)となり、一の位と十の位を入れ替えると10x + (x-7)となる。
文章題 過不足の問題 ≫クラス全員でお金を出し合って記念品を買う。一人400円ずつ集めると900円足りない、一人500円ずつ集めると1700円あまる。クラスの生徒数を求めよ。
クラスの人数をx人とする。
400x+900=500x-1700
【答】26人
【解説】クラスの人数をx人とすると、一人400円ずつだと400x円集まるが、900円足りないので、400x+900が記念品の値段である。
また、500円ずつ集めた500xでは1700円あまるので、500x-1700が記念品の値段となる。
2通りで表した記念品の値段を=(等号)で結んで方程式とする。
文章題 平均点の問題 ≫男子16人、女子17人のクラスで身長を測ったらクラス全体の平均が158.3㎝でした。男子の平均は女子平均より3.3㎝高かった。男子の身長の平均は何㎝でしょうか。
男子の身長の平均をxcmとする。
16x+17(x-3.3)=158.3×33
【答】160cm
【解説】男子の平均点をx点とすると女子はそれより3.7点高いので(x+3.7)点である。
平均点×人数 = 合計点なので
男子女子クラス
人数172037
平均点xx+3.777
合計点17x20(x+3.7)77×37
男子の合計点+女子の合計点 = クラスの合計点 から方程式をつくる。
文章題 速さ 追いつく1 ≫太郎君が家を出発して毎分55mで歩いていった。太郎君が出発してから4分後に兄が毎分75mで追いかけた。兄が太郎君に追いつくのは、兄が家を出てから何分後か。
兄が家を出てからx分後に追いつくとする。
55(x+4)=75x
【答】11分後
【解説】兄が家を出てからの時間をx分とすると、兄は太郎くんの4分後に家を出ているので太郎くんの時間は兄より4分長い(x+4)分である。道のり=時間×速さなので
太郎
速さ(m/分)5575
時間(分)x+4x
道のり(m)55(x+4)75x
追いつくときは、道のりが同じなので
太郎の歩いた道のり = 兄の歩いた道のり で式をつくる。
文章題 速さ 往復 ≫A町からB町までを往復した。行きは毎分80mで、帰りは毎分70mの速さで歩いたら往復にかかった時間は60分だった。A町からB町までの道のりは何mか。
A町からB町までをx mとする。
x80+x70=60
【答】2240m
【解説】往復では行きと帰りの道のりの長さは同じなので両方xm, 時間 = 道のり÷速さなので
 行き帰り
速さ(m/分)8070
時間(分)x80x70
道のり(m)xx
合計時間が60分なので、行きの時間+帰りの時間 =60 となる。
文章題 速さが変わる問題 ≫家から駅まで4㎞ある。家を出てから途中までは毎分75mで歩き、残りは毎分55mで歩いた。 ちょうど1時間で駅に着いた。速さを変えたのは家を出てから何分後か。
家を出てx分後に速さを変えたとする。
75x+55(60-x)=4000
【答】35分後
文章題 池の周り ≫湖の周りを1周する道がある。A君とB君がこの道を自転車で走る。同じ地点から同時に出発して反対方向に回ると15分後にはじめて出会い, 同じ方向に回ると60分でA君がB君をはじめて追い越す。二人は常に一定の速さで走るものとし, A君の速さはB君の速さより毎分80mだけ速い。このとき, A君とB君の速さはそれぞれ毎分何mか求めよ。
B君の速さを毎分xmとする。
15(x+80)+15x=60(x+80)-60x
【答】A君毎分200m, B君毎分120m
【解説】A君はB君より毎分80mだけ速いので,A君の速さは 毎分(x+80)m
反対方向に回る場合, 二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
道のり=速さ×時間より
15(x+80)+15x=1周の道のり
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越すので
60(x+80)-60x=1周のみちのり
15(x+80)+15xと60(x+80)-60xはともに1周の道のりを表すので = で結ぶと
15(x+80)+15x=60(x+80)-60xは
これを解くとx=120これがB君の速さなので A君の速さは 120+80=200
文章題 割合 ≫ある中学校の全生徒数は495人である。女子の人数が男子の人数の98%のとき、この中学校の女子の人数を求めよ。
男子の人数をx人とする
x+98100x=495
【答】245人
【解説】割合98%が男子の人数をもとにしているので、求めるものは女子でも男子の人数をxとして方程式をたてる。女子の人数は(495-x)人なので
方程式を解いて出た解x=250 をもちいて 495-250 =245 が答えになる。
文章題 割引・割増 ≫定価1500円の商品を定価の2割引で売ったが、まだ原価の2割の利益があった。この商品の原価を求めよ。
原価をx円とする
810×1500 =1210x
【答】1000円
文章題 濃度 ≫ 12%の食塩水が90gある。これに3%の食塩水と4%の食塩水を混ぜた結果, 6%の食塩水が320gできた。3%の食塩水と4%の食塩水はそれぞれ何gずつ混ぜたのか求めよ。【式】3%の食塩水をxg混ぜるとする
 10.8+3100x+4100(230-x)=19.2
【答】3%が80g, 4%が150g
解答 表示
中央のの整数をxとする。
(x-1)+x+(x+1)=45
【答】14,15,16
【解説】整数は1ずつ大きくなるので、xの次はx+1、xの前はx-1である。よって連続する3つの自然数はx-1, x, x+1と表せる。
一の位の数をxとする。
x+10(x-7)+10x+x-7=99
【答】18
【解説】一の位が十の位より7大きいので、一の位がxなら十の位は(x-7)である。
2けたの自然数はx + 10(x-7)となり、一の位と十の位を入れ替えると10x + (x-7)となる。
クラスの人数をx人とする。
400x+900=500x-1700
【答】26人
【解説】クラスの人数をx人とすると、一人400円ずつだと400x円集まるが、900円足りないので、400x+900が記念品の値段である。
また、500円ずつ集めた500xでは1700円あまるので、500x-1700が記念品の値段となる。
2通りで表した記念品の値段を=(等号)で結んで方程式とする。
男子の身長の平均をxcmとする。
16x+17(x-3.3)=158.3×33
【答】160cm
【解説】男子の平均点をx点とすると女子はそれより3.7点高いので(x+3.7)点である。
平均点×人数 = 合計点なので
男子女子クラス
人数172037
平均点xx+3.777
合計点17x20(x+3.7)77×37
男子の合計点+女子の合計点 = クラスの合計点 から方程式をつくる。
兄が家を出てからx分後に追いつくとする。
55(x+4)=75x
【答】11分後
【解説】兄が家を出てからの時間をx分とすると、兄は太郎くんの4分後に家を出ているので太郎くんの時間は兄より4分長い(x+4)分である。道のり=時間×速さなので
太郎
速さ(m/分)5575
時間(分)x+4x
道のり(m)55(x+4)75x
追いつくときは、道のりが同じなので
太郎の歩いた道のり = 兄の歩いた道のり で式をつくる。
A町からB町までをx mとする。
x80+x70=60
【答】2240m
【解説】往復では行きと帰りの道のりの長さは同じなので両方xm, 時間 = 道のり÷速さなので
 行き帰り
速さ(m/分)8070
時間(分)x80x70
道のり(m)xx
合計時間が60分なので、行きの時間+帰りの時間 =60 となる。
家を出てx分後に速さを変えたとする。
75x+55(60-x)=4000
【答】35分後
B君の速さを毎分xmとする。
15(x+80)+15x=60(x+80)-60x
【答】A君毎分200m, B君毎分120m
【解説】A君はB君より毎分80mだけ速いので,A君の速さは 毎分(x+80)m
反対方向に回る場合, 二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
道のり=速さ×時間より
15(x+80)+15x=1周の道のり
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越すので
60(x+80)-60x=1周のみちのり
15(x+80)+15xと60(x+80)-60xはともに1周の道のりを表すので = で結ぶと
15(x+80)+15x=60(x+80)-60xは
これを解くとx=120これがB君の速さなので A君の速さは 120+80=200
男子の人数をx人とする
x+98100x=495
【答】245人
【解説】割合98%が男子の人数をもとにしているので、求めるものは女子でも男子の人数をxとして方程式をたてる。女子の人数は(495-x)人なので
方程式を解いて出た解x=250 をもちいて 495-250 =245 が答えになる。
原価をx円とする
810×1500 =1210x
【答】1000円
【式】3%の食塩水をxg混ぜるとする
 10.8+3100x+4100(230-x)=19.2
【答】3%が80g, 4%が150g
© 2006- 2022 SyuwaGakuin All Rights Reserved pc