小さい方の偶数をxとする。
x+(x+2)=22
【答】10,12
【解説】偶数は2,4,6,・・・と2ずつ大きくなるので、連続する2つの偶数はx, x+2と表せる。
十の位の数をxとする。
40x+x-(4x+10x)=54
【答】28
【解説】一の位が十の位の4倍なので十の位の数をxとすると一の位は4xとなる。すると2けたの自然数は4x+10x、一の位と十の位を入れ替えた数は40x+xとなる。
生徒の人数をx人とする。
600x+1500=800x-3100
【答】23人
【解説】※(アメなど)「配る」ときと、この問題のように「集める」ときで「あまる」「足りない」の表し方が逆になることに注意。
600円ずつあつめて1500円足りないので、集めた600xにさらに1500円足して目標金額に達する。つまり目標金額は600x+1500である。
また、800円ずつ集めて3100円余るので、800xから余った分を引くと目標額になる。つまり800x-3100が目標金額である。
600x+1500と800x-3100はともに目標金額を表しているので=(等号)で結んで方程式となる。
男子の身長の平均をxcmとする。
16x+17(x-3.3)=158.3×33
【答】160cm
【解説】男子の平均点をx点とすると女子はそれより3.7点高いので(x+3.7)点である。
平均点×人数 = 合計点なので| | 男子 | 女子 | クラス |
| 人数 | 17 | 20 | 37 |
| 平均点 | x | x+3.7 | 77 |
| 合計点 | 17x | 20(x+3.7) | 77×37 |
男子の合計点+女子の合計点 = クラスの合計点 から方程式をつくる。 花子さんが家を出てからの時間をx分とする。
75x=100(x-6)
【答】24分後
【解説】花子さんが家を出てからの時間をx分とすると、母は6分後に家を出ているので、母の時間は花子さんより6分短い(x-6)分である。道のり=時間×速さなので| | 花子 | 母 |
| 速さ(m/分) | 75 | 100 |
| 時間(分) | x | x-6 |
| 道のり(m) | 75x | 100(x-6) |
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。 行きの速さを毎分xmとする。
40x=50(x-20)
【答】毎分100m
【解説】帰りは行きより毎分20m遅いので、行きの速さをxm/分とすると帰りは(x-20)m/分となる。道のり=時間×速さなので| | 行き | 帰り |
| 速さ(m/分) | x | x-20 |
| 時間(分) | 40 | 50 |
| 道のり(m) | 40x | 50(x-20) |
往復は行きと帰りの道のりが同じなので 行きの道のり = 帰りの道のりで式ができる。 家を出てx分後に速さを変えたとする。
75x+55(60-x)=4000
【答】35分後
出発してからの時間をx分とする。
250x+150x=2400
【答】6分後
【解説】反対方向に回る場合, 二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
道のり=速さ×時間なので
一郎くんの走った道のり = 250x
早紀さんの走った道のり = 150x
これらの和が1周の道のりに等しいので
250x+150x=2400
これを解くとx=6
はじめに姉が持っていたアメの数をx個とする。
410×610x=410x-4
【答】25個
【解説】姉の持っていたアメをxとすると、妹にその4割をあげたので、自分には6割が残る。 姉妹はじめx0移動後610x410x食後410×610x410x-4
食べた後の2人のアメの数が同じなので=で結んで式を作る。
原価をx円とする
810×1500 =1210x
【答】1000円
原価をx円とする
610×1710x=x+10
【答】500円
【解説】原価をx円とすると、原価の7割の利益を見込んだ定価は1710x円である。この定価の4割引きの売値は1710x× 610 円となる。
売値 = 原価+利益 から式をつくる。