小さい方の奇数をxとする。
x+(x+2)=56
【答】27,29
【解説】奇数は1,3,5,7・・・と2ずつ大きくなるので連続する2つの奇数はx, x+2と表せる。
一の位の数をxとする。
x+10(7-x)+9=10x+7-x
【答】34
【解説】一の位と十の位の和が7なので、一の位がxなら十の位は(7-x)である。
2けたの自然数はx + 10(7-x)となり、一の位と十の位を入れ替えると10x + (7-x)となる。
長いすの数をx脚とする。
5x+13=6(x-7)+1
【答】54脚
【解説】長いすの全数をxとすると5人ずつ座ると5x人座れるが、13人が座れないので生徒数は(5x+13)と表せる。
6人ずつ座ると全く座らない長いす6脚と1人だけのいすが1脚できたので、6人座る長いすの数は(x-7)である。よって6(x-7)+1が生徒数となる。2通りで表した生徒数を=で結んで方程式とする。
女子の平均点をx点とする。
80×18+21x=73×39
【答】67点
【解説】平均点×人数 = 合計点なので| | 男子 | 女子 | クラス |
| 人数 | 20 | 15 | 35 |
| 平均点 | x | 71 | 67 |
| 合計点 | 20x | 71×15 | 67×35 |
男子の合計点+女子の合計点 = クラスの合計点 から方程式をつくる。 兄が家を出てからx分後に追いつくとする。
55(x+4)=75x
【答】11分後
【解説】兄が家を出てからの時間をx分とすると、兄は太郎くんの4分後に家を出ているので太郎くんの時間は兄より4分長い(x+4)分である。道のり=時間×速さなので| | 太郎 | 兄 |
| 速さ(m/分) | 55 | 75 |
| 時間(分) | x+4 | x |
| 道のり(m) | 55(x+4) | 75x |
追いつくときは、道のりが同じなので
太郎の歩いた道のり = 兄の歩いた道のり で式をつくる。
行きの速さを毎時xkmとする。
2x=15060(x-10)
【答】毎時50km
【解説】帰りは行きより毎時10km遅いので、行きの速さをxkm/時とすると帰りは(x-10)km/時となる。2時間30分を時間に直すと15060時間, 道のり=時間×速さなので| | 行き | 帰り |
| 速さ(km/時) | x | x-10 |
| 時間(時間) | 2 | 15060 |
| 道のり(km) | 2x | 15060(x-10) |
往復は行きと帰りの道のりが同じなので 行きの道のり = 帰りの道のりで式ができる。
たかしくんの家から公園までをxmとする。
x85=1300-x65-2
【答】663m
【解説】たかし家〜公園〜よしこ家が1300mなのでたかし家〜公園をxmとするとよしこ家〜公園は(1300-x)mとなる。時間=道のり÷速さなので| | たかし家 〜公園 | よしこ家 〜公園 |
| 速さ(m/分) | 85 | 65 |
| 時間(分) | x85 | 1300-x65 |
| 道のり(m) | x | 1300-x |
たかしが2分早くついたのでたかしの時間 = よしこの時間-2である。 出発してからの時間をx分とする。
250x+150x=4800
【答】12分後
【解説】求める時間の単位を分にすると,速さの単位も時速kmから分速mに直す必要がある。時速15kmは15×1000÷60=250 分速250m, 時速9kmは9×1000÷60=150 分速150mである。
反対方向に回る場合, 二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
道のり=速さ×時間なので
たかし君の走った道のり = 250x
ひろこさんの走った道のり = 150x
これらの和が1周の道のりに等しいので
250x+150x=4800
これを解くとx=12
姉が持っていたアメをx個とする。
64100x=36100x+x-18
【答】32個
【解説】求めるものは全部のアメの数だが、割合36%のもとになる数が姉がはじめに持っていた数なのでそれをxにする。
姉がxだと,弟はそれより18個少ないので(x-18)個, 姉から36%減らして弟に36%増やす。| | 姉 | 弟 |
| はじめのアメの数 | x | x-18 |
| アメの増減 | - 36100x | + 36100x |
| 最終的なアメの数 | x- 36100 x | x-18 + 36100x |
最終的に姉と弟のアメの数が同じになったので =で結んで方程式にする。 定価をx円とする
810x=1110×1200
【答】1650円
定価をx円とする
610x=125100×900
【答】1875円