中央のの整数をxとする。
(x-1)+x+(x+1)=15
【答】4,5,6
【解説】整数は1ずつ大きくなるので、xの次はx+1、xの前はx-1である。よって連続する3つの自然数はx-1, x, x+1と表せる。
十の位の数をxとする。
2x+1+10x+10(2x+1)+x=110
【答】37
【解説】一の位の数が十の位の数の2倍より1大きいので、十の位の数をxとすると一の位の数は2x+1である。2けたの自然数は2x+1+10x,一の位と十の位の数を入れ替えると10(2x+1)+xとなる。
子どもの人数をx人とする。
8x+22=11x-29
【答】158個
【解説】求めるものはアメの数だが、子どもの人数をxにしたほうが式がたてやすい。
x人に8個ずつ配ると8x, 22個あまるのでアメの数は8x+22
x人に11個ずつ配ると11x, 29個足りないのでアメの数は11x-29
8x+22と11x-29はどちらもアメの数を表しているので=(等号)で結べる。
8x+22 = 11x-29
これを解くとx=17
求めるものはアメの数なので 8x+22に代入して 8×17+22=158
女子の平均点をx点とする。
80×18+21x=73×39
【答】67点
【解説】平均点×人数 = 合計点なので | 男子 | 女子 | クラス |
人数 | 20 | 15 | 35 |
平均点 | x | 71 | 67 |
合計点 | 20x | 71×15 | 67×35 |
男子の合計点+女子の合計点 = クラスの合計点 から方程式をつくる。 花子さんが家を出てからの時間をx分とする。
75x=100(x-6)
【答】24分後
【解説】花子さんが家を出てからの時間をx分とすると、母は6分後に家を出ているので、母の時間は花子さんより6分短い(x-6)分である。道のり=時間×速さなので | 花子 | 母 |
速さ(m/分) | 75 | 100 |
時間(分) | x | x-6 |
道のり(m) | 75x | 100(x-6) |
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。 A町からB町までの道のりをxkmとする。
x40+x30=28060
【答】80km
【解説】往復は行きと帰りの道のりの長さは同じなので両方xkm,時間 = 道のり÷速さ より | 行き | 帰り |
速さ(km/時) | 40 | 30 |
時間(時間) | x40 | x30 |
道のり(km) | x | x |
合計時間が4時間40分を時間に直すと28060なので、行きの時間+帰りの時間 =28060 となる。 太郎君の家から公園までの道のりをxmとする。
x80+x+15060=27
【答】840m
【解説】太郎家から公園をxmとすると花子家から公園はそれより150m遠いので(x+150)m、時間=道のり÷速さなので | 太郎家〜公園 | 公園〜花子家 |
速さ(m/分) | 80 | 60 |
時間(分) | x80 | x+15060 |
道のり(m) | x | x+150 |
時間の合計が27分を使って式をつくる。 出発してからの時間をx分とする。
96x-64x=800
【答】25分後
【解説】同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
この場合,兄と妹の歩いた道のりの差が800mになったときである。
道のり=速さ×時間なので
兄の歩いた道のり = 96x
妹の歩いた道のり=64x
これらの差が1周分なので
96x-64x=800
これを解くと
x=25
はじめに姉が持っていたアメの数をx個とする。
410×610x=410x-4
【答】25個
【解説】姉の持っていたアメをxとすると、妹にその4割をあげたので、自分には6割が残る。 姉妹はじめx0移動後610x410x食後410×610x410x-4
食べた後の2人のアメの数が同じなので=で結んで式を作る。
定価をx円とする
610x=125100×900
【答】1875円
原価をx円とする
800×910=144100x
【答】500円