中央のの整数をxとする。
(x-1)+x+(x+1)=-6
【答】-3,-2,-1
【解説】整数は1ずつ大きくなるので、xの次はx+1、xの前はx-1である。よって連続する3つの自然数はx-1, x, x+1と表せる。
十の位の数をxとする。
2x+1+10x+10(2x+1)+x=110
【答】37
【解説】一の位の数が十の位の数の2倍より1大きいので、十の位の数をxとすると一の位の数は2x+1である。2けたの自然数は2x+1+10x,一の位と十の位の数を入れ替えると10(2x+1)+xとなる。
クラスの人数をx人とする。
400x+900=500x-1700
【答】26人
【解説】クラスの人数をx人とすると、一人400円ずつだと400x円集まるが、900円足りないので、400x+900が記念品の値段である。
また、500円ずつ集めた500xでは1700円あまるので、500x-1700が記念品の値段となる。
2通りで表した記念品の値段を=(等号)で結んで方程式とする。
男子の人数をx人とする。
60x+68(32-x)=64.5×32
【答】14人
【解説】32人のクラスで、男子の人数がx人なら、女子の人数は(32-x)人と表せる。また、平均点×人数=合計点なので| | 男子 | 女子 | クラス |
| 人数 | x | 32-x | 32 |
| 平均点 | 60 | 68 | 64.5 |
| 合計点 | 60x | 68(32-x) | 64.5×32 |
男子の合計点 + 女子の合計点 = クラスの合計点 から方程式をつくる 花子さんが家を出てからの時間をx分とする。
45x=120(x-10)
【答】16分後
【解説】花子さんが家を出てからの時間をx分とすると、母は10分後に家を出ているので、母の時間は花子さんより10分短い(x-10)分である。道のり=時間×速さなので| | 花子 | 母 |
| 速さ(m/分) | 45 | 120 |
| 時間(分) | x | x-10 |
| 道のり(m) | 45x | 120(x-10) |
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。 行きにかかった時間をx分とする。
70x=60(x+8)
【答】48分
【解説】行きの時間をx分とすると帰りの時間は(x+8)分、道のり =時間×速さなので| | 行き | 帰り |
| 速さ(m/分) | 70 | 60 |
| 時間(分) | x | x+8 |
| 道のり(m) | 70x | 60(x+8) |
往復は行きと帰りの道のりが同じなので 行きの道のり=帰りの道のり で式をつくる。 家から公園までの速さを毎分xmとする。
15x+10(x-20)=1800
【答】毎分80m
【解説】速さを20m/分遅くしたので、家から公園の速さをxm/分とすると公園から駅は(x-20)m/分である。道のり=時間×速さなので| | 家〜公園 | 公園〜駅 |
| 速さ(m/分) | x | x-20 |
| 時間(分) | 15 | 10 |
| 道のり(m) | 15x | 10(x-20) |
道のりの合計が1800mを使って式をたてる。 出発してからの時間をx分とする。
250x+150x=2400
【答】6分後
【解説】反対方向に回る場合, 二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
道のり=速さ×時間なので
一郎くんの走った道のり = 250x
早紀さんの走った道のり = 150x
これらの和が1周の道のりに等しいので
250x+150x=2400
これを解くとx=6
全男子数をx人とする
310x+210(460-x)=116
【答】240人
【解説】全男子数をx人とすると、全女子数は(460-x)人である。
自転車通学の男子は310x、女子は210(460-x)となる。
これらの合計が116となることから方程式をつくる。
原価をx円とする
1510x-700=x+100
【答】1600円
【解説】原価をx円とすると、原価の5割の利益を見込んでつけた定価は1510x円である。
売値はここから700円引いたものなので、(1510x-700)円となる。
売値 = 原価+利益 から式をつくる
【式】8%の食塩水をxgとする。
10+8100x=6100(200+x)
【答】100g