答表示

中1 方程式の利用 演習

文章題 連続する整数 ≫連続する2つの奇数があり、その和は56である。この2つの奇数を求めよ。
小さい方の奇数をxとする。
x+(x+2)=56
【答】27,29
【解説】奇数は1,3,5,7・・・と2ずつ大きくなるので連続する2つの奇数はx, x+2と表せる。
文章題 2けたの自然数 ≫一の位の数が十の位の数より2大きい2けたの自然数がある。この自然数の一の位の数と十の位の数を入れ替えた数をもとの数にたすと176になる。もとの自然数を求めよ。
一の位の数をxとする。
x+10(x-2)+10x+x-2=176
【答】79
【解説】一の位が十の位より2大きいので、一の位がxなら十の位は(x-2)である。
2けたの自然数はx + 10(x-2)となり、一の位と十の位を入れ替えると10x + (x-2)となる。
文章題 過不足の問題 ≫あめを何人かの生徒に分ける。一人4個ずつ分けると10個あまり、一人6個ずつ分けると8個足りない。生徒の人数を求めなさい。
生徒の人数をx人とする
4x+10=6x-8
【答】9人,78
【解説】子供の数をxとして、折り紙の全枚数を2通りで表す。
一人の
枚数
67
人数xx
配る数6x7x
過不足+8-10
折り紙の
全枚数
6x+87x-10
4枚ずつ配って8枚あまっているので、折り紙の全枚数を表すと4x+8、5枚配ろうとして10枚足りないので、5x-10が全枚数である。折り紙の全枚数は同じものを表しているので=(等号)でつなげば方程式になる。
文章題 平均点の問題 ≫クラス39人全体の平均点が73点、女子20人の平均点が65.4点でした。男子の平均点を求めよ。
男子の平均点をx点とする。
20×65.4+19x=39×73
【答】81点
【解説】平均点×人数 = 合計点なので
男子女子クラス
人数201535
平均点x7167
合計点20x71×1567×35
男子の合計点+女子の合計点 = クラスの合計点 から方程式をつくる。
文章題 速さ 追いつく1 ≫花子さんが家をでて毎分45mで歩いていった。その10分後に母が毎分120mで花子さんを追いかけた。母が花子さんに追いつくのは花子さんが家を出てから何分後か。
花子さんが家を出てからの時間をx分とする。
45x=120(x-10)
【答】16分後 
【解説】花子さんが家を出てからの時間をx分とすると、母は10分後に家を出ているので、母の時間は花子さんより10分短い(x-10)分である。道のり=時間×速さなので
花子
速さ(m/分)45120
時間(分)xx-10
道のり(m)45x120(x-10)
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。
文章題 速さ 往復 ≫A地点とB地点の間を往復した。行きは毎分70m、帰りは毎分50mで歩いたら帰りのほうが18分多くかかった。AB間の道のりは何mか。
AB間の道のりをxmとする。
x50-x70=18
【答】3150m
【解説】往復では行きと帰りの道のりが同じなので、両方x ,時間 =道のり÷速さなので
 行き帰り
速さ(m/分)7050
時間(分)x70x50
道のり(m)xx
帰りのほうが18分長いので 帰りの時間 – 行きの時間 =18
文章題 速さが変わる問題 ≫A君が家から1600m離れた駅まで行った。自転車で7分走ったところでパンクしたため、そこから5分歩いて駅まで行った。自転車の速さは毎分何mか。ただし、自転車の速さは歩く速さより毎分100m速いとする。
自転車の速さを毎分xmとする。
7x+5(x-100)=1600
【答】毎分175m
文章題 池の周り ≫1周2400mの円形の道を一郎くんと早紀さんが自転車で回る。一郎くんの速さは分速250m, 早紀さんの速さは分速150mである。二人が同時に同じ場所から出発して反対方向に回る場合、二人がはじめて出会うのは出発から何分後か。
出発してからの時間をx分とする。
250x+150x=2400
【答】6分後
【解説】反対方向に回る場合, 二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
道のり=速さ×時間なので
一郎くんの走った道のり = 250x
早紀さんの走った道のり = 150x
これらの和が1周の道のりに等しいので
250x+150x=2400
これを解くとx=6
文章題 割合 ≫全校生徒460人のうち、自転車通学の割合は男子が全男子数の3割で、女子は全女子数の2割である。 自転車通学の人数は男女合わせて116人である。この学校の全男子数を求めよ。
全男子数をx人とする
310x+210(460-x)=116
【答】240人
【解説】全男子数をx人とすると、全女子数は(460-x)人である。
自転車通学の男子は310x、女子は210(460-x)となる。
これらの合計が116となることから方程式をつくる。
文章題 割引・割増 ≫定価750円の商品を定価の30%引で売ったが、まだ原価の5%の利益があった。この商品の原価を求めよ。
原価をx円とする
750×70100=105100x
【答】500円
文章題 濃度 ≫ある品物を仕入れて、原価の48%の利益を見込んで定価をつけた。定価では売れなかったので900円引きで売った。品物1個につき原価の12%の利益になった。原価を求めよ。
原価をx円とする
148100x-900=112100x
【答】2500円
【解説】原価をx円とすると原価の48%の利益を見込んでつけた定価は148100x円である。そこから900円引きで売った売値は(148100x-900)円となる。
また、原価の12%の利益になったとの記述から売値は 112100xとも表せる。2通りであらわした売値を=で結んで式をつくる。
解答 表示
小さい方の奇数をxとする。
x+(x+2)=56
【答】27,29
【解説】奇数は1,3,5,7・・・と2ずつ大きくなるので連続する2つの奇数はx, x+2と表せる。
一の位の数をxとする。
x+10(x-2)+10x+x-2=176
【答】79
【解説】一の位が十の位より2大きいので、一の位がxなら十の位は(x-2)である。
2けたの自然数はx + 10(x-2)となり、一の位と十の位を入れ替えると10x + (x-2)となる。
生徒の人数をx人とする
4x+10=6x-8
【答】9人,78
【解説】子供の数をxとして、折り紙の全枚数を2通りで表す。
一人の
枚数
67
人数xx
配る数6x7x
過不足+8-10
折り紙の
全枚数
6x+87x-10
4枚ずつ配って8枚あまっているので、折り紙の全枚数を表すと4x+8、5枚配ろうとして10枚足りないので、5x-10が全枚数である。折り紙の全枚数は同じものを表しているので=(等号)でつなげば方程式になる。
男子の平均点をx点とする。
20×65.4+19x=39×73
【答】81点
【解説】平均点×人数 = 合計点なので
男子女子クラス
人数201535
平均点x7167
合計点20x71×1567×35
男子の合計点+女子の合計点 = クラスの合計点 から方程式をつくる。
花子さんが家を出てからの時間をx分とする。
45x=120(x-10)
【答】16分後 
【解説】花子さんが家を出てからの時間をx分とすると、母は10分後に家を出ているので、母の時間は花子さんより10分短い(x-10)分である。道のり=時間×速さなので
花子
速さ(m/分)45120
時間(分)xx-10
道のり(m)45x120(x-10)
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。
AB間の道のりをxmとする。
x50-x70=18
【答】3150m
【解説】往復では行きと帰りの道のりが同じなので、両方x ,時間 =道のり÷速さなので
 行き帰り
速さ(m/分)7050
時間(分)x70x50
道のり(m)xx
帰りのほうが18分長いので 帰りの時間 – 行きの時間 =18
自転車の速さを毎分xmとする。
7x+5(x-100)=1600
【答】毎分175m
出発してからの時間をx分とする。
250x+150x=2400
【答】6分後
【解説】反対方向に回る場合, 二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
道のり=速さ×時間なので
一郎くんの走った道のり = 250x
早紀さんの走った道のり = 150x
これらの和が1周の道のりに等しいので
250x+150x=2400
これを解くとx=6
全男子数をx人とする
310x+210(460-x)=116
【答】240人
【解説】全男子数をx人とすると、全女子数は(460-x)人である。
自転車通学の男子は310x、女子は210(460-x)となる。
これらの合計が116となることから方程式をつくる。
原価をx円とする
750×70100=105100x
【答】500円
原価をx円とする
148100x-900=112100x
【答】2500円
【解説】原価をx円とすると原価の48%の利益を見込んでつけた定価は148100x円である。そこから900円引きで売った売値は(148100x-900)円となる。
また、原価の12%の利益になったとの記述から売値は 112100xとも表せる。2通りであらわした売値を=で結んで式をつくる。
© 2006- 2022 SyuwaGakuin All Rights Reserved pc