小さい方の偶数をxとする。
x+(x+2)=6
【答】2,4
【解説】偶数は2,4,6,・・・と2ずつ大きくなるので、連続する2つの偶数はx, x+2と表せる。
一の位の数をxとする。
x+10(13-x)+45=10x+13-x
【答】49
【解説】一の位と十の位の和が13なので、一の位がxなら十の位は(13-x)である。
2けたの自然数はx + 10(13-x)となり、一の位と十の位を入れ替えると10x + (13-x)となる。
生徒の人数をx人とする。
1000x+1800=1200x-2600
【答】23800円
【解説】求めるものはクラス会の費用だが、人数をxとするほうが式をたてるのが容易である。
1000円ずつ集めて1800円たりないので、1000xに1800を足すと目標金額になる。つまり目標金額は1000x+1800(円)である。
1200円ずつ集めて2600円あまるので、1200xから余った金額を引いた1200x-2600(円)が目標金額となる。
1000x+1800=1200x-2600を解くとx=22となるが、求めるものはクラス会の費用なので1000x+1800に代入して 1000×22+1800 = 23800
男子の人数をx人とする。
72x+80(x+18)=76.5(2x+18)
【答】63人
【解説】
兄が家を出てからx分後に追いつくとする。
55(x+4)=75x
【答】11分後
【解説】兄が家を出てからの時間をx分とすると、兄は太郎くんの4分後に家を出ているので太郎くんの時間は兄より4分長い(x+4)分である。道のり=時間×速さなので| | 太郎 | 兄 |
| 速さ(m/分) | 55 | 75 |
| 時間(分) | x+4 | x |
| 道のり(m) | 55(x+4) | 75x |
追いつくときは、道のりが同じなので
太郎の歩いた道のり = 兄の歩いた道のり で式をつくる。
行きの速さを毎時xkmとする。
2x=15060(x-10)
【答】毎時50km
【解説】帰りは行きより毎時10km遅いので、行きの速さをxkm/時とすると帰りは(x-10)km/時となる。2時間30分を時間に直すと15060時間, 道のり=時間×速さなので| | 行き | 帰り |
| 速さ(km/時) | x | x-10 |
| 時間(時間) | 2 | 15060 |
| 道のり(km) | 2x | 15060(x-10) |
往復は行きと帰りの道のりが同じなので 行きの道のり = 帰りの道のりで式ができる。
たかしくんの家から公園までをxmとする。
x75=930-x55+2
【答】600m
出発してからの時間をx分とする。
96x-64x=800
【答】25分後
【解説】同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
この場合,兄と妹の歩いた道のりの差が800mになったときである。
道のり=速さ×時間なので
兄の歩いた道のり = 96x
妹の歩いた道のり=64x
これらの差が1周分なので
96x-64x=800
これを解くと
x=25
男子の人数をx人とする
x+98100x=495
【答】245人
【解説】割合98%が男子の人数をもとにしているので、求めるものは女子でも男子の人数をxとして方程式をたてる。女子の人数は(495-x)人なので
方程式を解いて出た解x=250 をもちいて 495-250 =245 が答えになる。
原価をx円とする
1510x-700=x+100
【答】1600円
【解説】原価をx円とすると、原価の5割の利益を見込んでつけた定価は1510x円である。
売値はここから700円引いたものなので、(1510x-700)円となる。
売値 = 原価+利益 から式をつくる
【式】6%の食塩水をxg混ぜるとする。
2+6100x+10100(400-x)=30
【答】6%が300g, 10%が100g