答表示

中1 方程式の利用 演習

文章題 連続する整数 ≫連続する2つの偶数があり、その和は154である。この2つの偶数を求めよ。
小さい方の偶数をxとする。
x+(x+2)=154
【答】76,78
【解説】偶数は2,4,6,・・・と2ずつ大きくなるので、連続する2つの偶数はx, x+2と表せる。
文章題 2けたの自然数 ≫一の位の数と十の位の数との和が13となる2けたの自然数がある。この自然数の十の位と一の位の数を入れ替えた数はもとの数より45大きくなる。もとの2けたの自然数を求めよ。
一の位の数をxとする。
x+10(13-x)+45=10x+13-x
【答】49
【解説】一の位と十の位の和が13なので、一の位がxなら十の位は(13-x)である。
2けたの自然数はx + 10(13-x)となり、一の位と十の位を入れ替えると10x + (13-x)となる。
文章題 過不足の問題 ≫長いすがいくつかある。一つの長いすに4人ずつ座ると座れない生徒が9人いた。そこで一つの長いすに5人ずつ座ると一つだけ2人しか座らない長いすができた。長いすの数を求めなさい。
長いすの数をx脚とする。
4x+9=5(x-1)+2
【答】12脚
【解説】全長いす数をxとすると4人ずつ座ると4x人座れるが、9人が座れないので生徒数は(4x+9)と表せる。
5人ずつ座ると1つの長いすだけ2人がけになるので、5人座る長いすの数は(x-1)である。よって5(x-1)+2が生徒数となる。2通りで表した生徒数を=で結んで方程式とする。
文章題 平均点の問題 ≫ある学校の1年生は女子より男子のほうが18人少ない。1年生全体の平均点が76.5点、男子の平均点が72点、女子の平均点が80点だった。男子の人数を求めよ。
男子の人数をx人とする。
72x+80(x+18)=76.5(2x+18)
【答】63人
【解説】
文章題 速さ 追いつく1 ≫太郎君が家を出発して毎分55mで歩いていった。太郎君が出発してから4分後に兄が毎分75mで追いかけた。兄が太郎君に追いつくのは、兄が家を出てから何分後か。
兄が家を出てからx分後に追いつくとする。
55(x+4)=75x
【答】11分後
【解説】兄が家を出てからの時間をx分とすると、兄は太郎くんの4分後に家を出ているので太郎くんの時間は兄より4分長い(x+4)分である。道のり=時間×速さなので
太郎
速さ(m/分)5575
時間(分)x+4x
道のり(m)55(x+4)75x
追いつくときは、道のりが同じなので
太郎の歩いた道のり = 兄の歩いた道のり で式をつくる。
文章題 速さ 往復 ≫A町とB町を自転車で往復した。行きは毎分280m、帰りは毎分210mで走ったら、走っていた時間は帰りのほうが9分長かった。行きにかかった時間は何分か。
行きにかかった時間をx分とする。
280x=210(x+9)
【答】27分
【解説】行きの時間をx分とすると帰りの時間は(x+9)分、道のり =時間×速さなので
 行き帰り
速さ(m/分)280210
時間(分)xx+9
道のり(m)280x210(x+9)
往復は行きと帰りの道のりが同じなので 行きの道のり=帰りの道のり で式をつくる。
文章題 速さが変わる問題 ≫A君の家とB君の家は1.5㎞離れている。A君は9時に家を出てB君の家に向かった。B君は同じ道を9時5分に出てA君の家に向かった。A君が時速4㎞、B君が時速3㎞のとき二人の出会った時刻は9時何分か。
A君が家を出てからx分後に出会ったとする。
460x+360(x-5)=32
【答】9時15分
文章題 池の周り ≫池の周りを1周する道がある。A君とB君がこの道を自転車で走る。同じ地点から同時に出発して反対方向に回ると9分後にはじめて出会い, 同じ方向に回ると50分でA君がB君をはじめて追い越す。二人は常に一定の速さで走るものとし, A君の速さが毎分236mのとき, B君の速さは毎分何mか求めよ。
B君の速さを毎分xmとする。
9×236+9x=50×236-50x
【答】毎分164m
【解説】反対方向に回る場合, 二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
道のり=速さ×時間より
9×236+9x=1周の道のり
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越すので
50×236-50x=1周のみちのり
9×236+9xと50×236-50xはともに1周の道のりを表すので = で結ぶと
9×236-9x=50×236-50x
これを解くとx=164
文章題 割合 ≫ある部活には1年から3年まで部員がいる。1年生の人数は、部活全体の人数の40%で、1年生の人数は2年生、3年生の人数の合計より7人少ない。この部活全体の人数を求めよ。
部活全体の人数をx人とする
60100x-40100x=7
【答】35人
【解説】部活全体の人数をx人とすると1年生は全体の40%なので 40100x, 2年生と3年生の合計は 60100x, 1年生が2・3年生合計より7人少ないので2・3年生合計 - 1年生 =7 で方程式を作る。
文章題 割引・割増 ≫原価1200円の商品に定価をつけて、定価の2割引きで売ってもまだ原価の1割の利益があるようにしたい。定価をいくらにすればよいか。
定価をx円とする
810x=1110×1200
【答】1650円
文章題 濃度 ≫ある品物を仕入れて、原価の48%の利益を見込んで定価をつけた。定価では売れなかったので900円引きで売った。品物1個につき原価の12%の利益になった。原価を求めよ。
原価をx円とする
148100x-900=112100x
【答】2500円
【解説】原価をx円とすると原価の48%の利益を見込んでつけた定価は148100x円である。そこから900円引きで売った売値は(148100x-900)円となる。
また、原価の12%の利益になったとの記述から売値は 112100xとも表せる。2通りであらわした売値を=で結んで式をつくる。
解答 表示
小さい方の偶数をxとする。
x+(x+2)=154
【答】76,78
【解説】偶数は2,4,6,・・・と2ずつ大きくなるので、連続する2つの偶数はx, x+2と表せる。
一の位の数をxとする。
x+10(13-x)+45=10x+13-x
【答】49
【解説】一の位と十の位の和が13なので、一の位がxなら十の位は(13-x)である。
2けたの自然数はx + 10(13-x)となり、一の位と十の位を入れ替えると10x + (13-x)となる。
長いすの数をx脚とする。
4x+9=5(x-1)+2
【答】12脚
【解説】全長いす数をxとすると4人ずつ座ると4x人座れるが、9人が座れないので生徒数は(4x+9)と表せる。
5人ずつ座ると1つの長いすだけ2人がけになるので、5人座る長いすの数は(x-1)である。よって5(x-1)+2が生徒数となる。2通りで表した生徒数を=で結んで方程式とする。
男子の人数をx人とする。
72x+80(x+18)=76.5(2x+18)
【答】63人
【解説】
兄が家を出てからx分後に追いつくとする。
55(x+4)=75x
【答】11分後
【解説】兄が家を出てからの時間をx分とすると、兄は太郎くんの4分後に家を出ているので太郎くんの時間は兄より4分長い(x+4)分である。道のり=時間×速さなので
太郎
速さ(m/分)5575
時間(分)x+4x
道のり(m)55(x+4)75x
追いつくときは、道のりが同じなので
太郎の歩いた道のり = 兄の歩いた道のり で式をつくる。
行きにかかった時間をx分とする。
280x=210(x+9)
【答】27分
【解説】行きの時間をx分とすると帰りの時間は(x+9)分、道のり =時間×速さなので
 行き帰り
速さ(m/分)280210
時間(分)xx+9
道のり(m)280x210(x+9)
往復は行きと帰りの道のりが同じなので 行きの道のり=帰りの道のり で式をつくる。
A君が家を出てからx分後に出会ったとする。
460x+360(x-5)=32
【答】9時15分
B君の速さを毎分xmとする。
9×236+9x=50×236-50x
【答】毎分164m
【解説】反対方向に回る場合, 二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
道のり=速さ×時間より
9×236+9x=1周の道のり
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越すので
50×236-50x=1周のみちのり
9×236+9xと50×236-50xはともに1周の道のりを表すので = で結ぶと
9×236-9x=50×236-50x
これを解くとx=164
部活全体の人数をx人とする
60100x-40100x=7
【答】35人
【解説】部活全体の人数をx人とすると1年生は全体の40%なので 40100x, 2年生と3年生の合計は 60100x, 1年生が2・3年生合計より7人少ないので2・3年生合計 - 1年生 =7 で方程式を作る。
定価をx円とする
810x=1110×1200
【答】1650円
原価をx円とする
148100x-900=112100x
【答】2500円
【解説】原価をx円とすると原価の48%の利益を見込んでつけた定価は148100x円である。そこから900円引きで売った売値は(148100x-900)円となる。
また、原価の12%の利益になったとの記述から売値は 112100xとも表せる。2通りであらわした売値を=で結んで式をつくる。
© 2006- 2022 SyuwaGakuin All Rights Reserved pc