答表示

中1 方程式の利用 演習

文章題 連続する整数 ≫連続する2つの整数があり、その和は25である。この2つの整数を求めよ。
小さい方の整数をxとする。
x+(x+1)=25
【答】12,13
【解説】整数は1ずつ大きくなるので、xの次はx+1である。よって連続する2つの自然数はxとx+1と表せる。
文章題 2けたの自然数 ≫一の位の数が十の位の数のちょうど2倍になるような2けたの自然数がある。この2けたの自然数の一の位と十の位の数を入れ替えた数はもとの自然数より9大きくなる。もとの2けたの自然数を求めよ。
十の位の数をxとする。
20x+x-(2x+10x)=9
【答】12
【解説】一の位が十の位の2倍なので十の位の数をxとすると一の位は2xとなる。すると2けたの自然数は2x+10x、一の位と十の位を入れ替えた数は20x+xとなる。
文章題 過不足の問題 ≫何人かの子供に折り紙を配るのに、1人に8枚ずつ配ろうとすると11枚余り、1人に9枚ずつ配ろうとすると10枚不足する。子供の人数を求めなさい。
子供の人数をx人とする
8x+11=9x-10
【答】21人
【解説】子供の数をxとして、折り紙の全枚数を2通りで表す。
一人の
枚数
67
人数xx
配る数6x7x
過不足+8-10
折り紙の
全枚数
6x+87x-10
4枚ずつ配って8枚あまっているので、折り紙の全枚数を表すと4x+8、5枚配ろうとして10枚足りないので、5x-10が全枚数である。折り紙の全枚数は同じものを表しているので=(等号)でつなげば方程式になる。
文章題 平均点の問題 ≫ある学校の1年生は女子より男子のほうが10人多い。1年生全体の平均点が70点、男子の平均点が65点、女子の平均点が76点だった。男子の人数を求めよ。
男子の人数をx人とする。
65x+76(x-10)=70(2x-10)
【答】60人
【解説】女子より男子が2人多いので、男子がx人なら、女子は(x-2)人、クラスは(x+x-2)人である。
男子女子クラス
人数xx-22x-2
平均点6573.569
合計点65x73.5(x-2)69(2x-2)
男子の合計点 + 女子の合計点 = クラスの合計点から式をつくる。
文章題 速さ 追いつく1 ≫太郎君が家を出発して毎分55mで歩いていった。太郎君が出発してから4分後に兄が毎分75mで追いかけた。兄が太郎君に追いつくのは、兄が家を出てから何分後か。
兄が家を出てからx分後に追いつくとする。
55(x+4)=75x
【答】11分後
【解説】兄が家を出てからの時間をx分とすると、兄は太郎くんの4分後に家を出ているので太郎くんの時間は兄より4分長い(x+4)分である。道のり=時間×速さなので
太郎
速さ(m/分)5575
時間(分)x+4x
道のり(m)55(x+4)75x
追いつくときは、道のりが同じなので
太郎の歩いた道のり = 兄の歩いた道のり で式をつくる。
文章題 速さ 往復 ≫A町からB町までを往復した。行きは毎分80mで、帰りは毎分70mの速さで歩いたら往復にかかった時間は60分だった。A町からB町までの道のりは何mか。
A町からB町までをx mとする。
x80+x70=60
【答】2240m
【解説】往復では行きと帰りの道のりの長さは同じなので両方xm, 時間 = 道のり÷速さなので
 行き帰り
速さ(m/分)8070
時間(分)x80x70
道のり(m)xx
合計時間が60分なので、行きの時間+帰りの時間 =60 となる。
文章題 速さが変わる問題 ≫A君が家から1600m離れた駅まで行った。自転車で7分走ったところでパンクしたため、そこから5分歩いて駅まで行った。自転車の速さは毎分何mか。ただし、自転車の速さは歩く速さより毎分100m速いとする。
自転車の速さを毎分xmとする。
7x+5(x-100)=1600
【答】毎分175m
文章題 池の周り ≫湖の周りを1周する道がある。A君とB君がこの道を歩く。同じ地点から同時に出発して反対方向に回ると12分30秒後にはじめて出会い, 同じ方向に回ると43分45秒でA君がB君をはじめて追い越す。二人は常に一定の速さで歩くものとし, A君の速さはB君の速さより毎分32mだけ速い。このとき, A君とB君の速さはそれぞれ毎分何mか求めよ。
B君の速さを毎分xmとする。
252(x+32)+252x=1754(x+32)-1754x
【答】A君毎分72m, B君毎分40m
【解説】A君はB君より毎分32mだけ速いので,A君の速さは毎分(x+32)m
反対方向に回る場合,二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
12分30秒を分に直すと12+3060=252分なので
道のり=速さ×時間より
252(x+32)+252x=1周の道のり
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
43分45秒を分に直すと43+4560=1754分なので
1754(x+32)-1754x=1周のみちのり
252(x+32)+252xと1754(x+32)-1754xはともに1周の道のりを表すので=で結ぶと
252(x+32)+252x=1754(x+32)-1754x
これを解くとx=40これがB君の速さなのでA君の速さは40+32=72
文章題 割合 ≫ある中学校では全校生徒の49%が女子である。男子の人数は女子の人数より14人多い。この学校の全校生徒の人数を求めよ。
全校生徒数をx人とする
51100x-49100x=14
【答】700人
【解説】女子が49%なので100-49=51%が男子である。全校生徒をx人とすると女子は49100x、男子は51100xとなる。男子が女子より14人多いので男子の人数-女子の人数=14で式をつくる。
文章題 割引・割増 ≫ある品物を仕入れて、原価の4割の利益を見込んで定価をつけた。定価では売れなかったので200円引きで売った。品物1個につき原価の15%の利益になった。原価を求めよ。
原価をx円とする
1410x-200=115100x
【答】800円
【解説】原価をx円とすると原価の4割の利益を見込んでつけた定価は1410x円である。そこから200円引きで売った売値は(1410x-200)円となる。
また、原価の15%の利益になったとの記述から売値は 115100xとも表せる。2通りであらわした売値を=で結んで式をつくる。
文章題 濃度 ≫ 12%の食塩水が90gある。これに3%の食塩水と4%の食塩水を混ぜた結果, 6%の食塩水が320gできた。3%の食塩水と4%の食塩水はそれぞれ何gずつ混ぜたのか求めよ。【式】3%の食塩水をxg混ぜるとする
 10.8+3100x+4100(230-x)=19.2
【答】3%が80g, 4%が150g
解答 表示
小さい方の整数をxとする。
x+(x+1)=25
【答】12,13
【解説】整数は1ずつ大きくなるので、xの次はx+1である。よって連続する2つの自然数はxとx+1と表せる。
十の位の数をxとする。
20x+x-(2x+10x)=9
【答】12
【解説】一の位が十の位の2倍なので十の位の数をxとすると一の位は2xとなる。すると2けたの自然数は2x+10x、一の位と十の位を入れ替えた数は20x+xとなる。
子供の人数をx人とする
8x+11=9x-10
【答】21人
【解説】子供の数をxとして、折り紙の全枚数を2通りで表す。
一人の
枚数
67
人数xx
配る数6x7x
過不足+8-10
折り紙の
全枚数
6x+87x-10
4枚ずつ配って8枚あまっているので、折り紙の全枚数を表すと4x+8、5枚配ろうとして10枚足りないので、5x-10が全枚数である。折り紙の全枚数は同じものを表しているので=(等号)でつなげば方程式になる。
男子の人数をx人とする。
65x+76(x-10)=70(2x-10)
【答】60人
【解説】女子より男子が2人多いので、男子がx人なら、女子は(x-2)人、クラスは(x+x-2)人である。
男子女子クラス
人数xx-22x-2
平均点6573.569
合計点65x73.5(x-2)69(2x-2)
男子の合計点 + 女子の合計点 = クラスの合計点から式をつくる。
兄が家を出てからx分後に追いつくとする。
55(x+4)=75x
【答】11分後
【解説】兄が家を出てからの時間をx分とすると、兄は太郎くんの4分後に家を出ているので太郎くんの時間は兄より4分長い(x+4)分である。道のり=時間×速さなので
太郎
速さ(m/分)5575
時間(分)x+4x
道のり(m)55(x+4)75x
追いつくときは、道のりが同じなので
太郎の歩いた道のり = 兄の歩いた道のり で式をつくる。
A町からB町までをx mとする。
x80+x70=60
【答】2240m
【解説】往復では行きと帰りの道のりの長さは同じなので両方xm, 時間 = 道のり÷速さなので
 行き帰り
速さ(m/分)8070
時間(分)x80x70
道のり(m)xx
合計時間が60分なので、行きの時間+帰りの時間 =60 となる。
自転車の速さを毎分xmとする。
7x+5(x-100)=1600
【答】毎分175m
B君の速さを毎分xmとする。
252(x+32)+252x=1754(x+32)-1754x
【答】A君毎分72m, B君毎分40m
【解説】A君はB君より毎分32mだけ速いので,A君の速さは毎分(x+32)m
反対方向に回る場合,二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
12分30秒を分に直すと12+3060=252分なので
道のり=速さ×時間より
252(x+32)+252x=1周の道のり
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
43分45秒を分に直すと43+4560=1754分なので
1754(x+32)-1754x=1周のみちのり
252(x+32)+252xと1754(x+32)-1754xはともに1周の道のりを表すので=で結ぶと
252(x+32)+252x=1754(x+32)-1754x
これを解くとx=40これがB君の速さなのでA君の速さは40+32=72
全校生徒数をx人とする
51100x-49100x=14
【答】700人
【解説】女子が49%なので100-49=51%が男子である。全校生徒をx人とすると女子は49100x、男子は51100xとなる。男子が女子より14人多いので男子の人数-女子の人数=14で式をつくる。
原価をx円とする
1410x-200=115100x
【答】800円
【解説】原価をx円とすると原価の4割の利益を見込んでつけた定価は1410x円である。そこから200円引きで売った売値は(1410x-200)円となる。
また、原価の15%の利益になったとの記述から売値は 115100xとも表せる。2通りであらわした売値を=で結んで式をつくる。
【式】3%の食塩水をxg混ぜるとする
 10.8+3100x+4100(230-x)=19.2
【答】3%が80g, 4%が150g
© 2006- 2022 SyuwaGakuin All Rights Reserved pc