中央のの整数をxとする。
(x-1)+x+(x+1)=15
【答】4,5,6
【解説】整数は1ずつ大きくなるので、xの次はx+1、xの前はx-1である。よって連続する3つの自然数はx-1, x, x+1と表せる。
一の位の数をxとする。
x+10(12-x)+18=10x+12-x
【答】57
【解説】一の位と十の位の和が12なので、一の位がxなら十の位は(12-x)である。
2けたの自然数はx + 10(12-x)となり、一の位と十の位を入れ替えると10x + (12-x)となる。
子どもの人数をx人とする。
8x+22=11x-29
【答】158個
【解説】求めるものはアメの数だが、子どもの人数をxにしたほうが式がたてやすい。
x人に8個ずつ配ると8x, 22個あまるのでアメの数は8x+22
x人に11個ずつ配ると11x, 29個足りないのでアメの数は11x-29
8x+22と11x-29はどちらもアメの数を表しているので=(等号)で結べる。
8x+22 = 11x-29
これを解くとx=17
求めるものはアメの数なので 8x+22に代入して 8×17+22=158
男子の人数をx人とする。
72x+80(x+18)=76.5(2x+18)
【答】63人
【解説】
兄が家を出てからx分後に追いつくとする。
55(x+4)=75x
【答】11分後
【解説】兄が家を出てからの時間をx分とすると、兄は太郎くんの4分後に家を出ているので太郎くんの時間は兄より4分長い(x+4)分である。道のり=時間×速さなので | 太郎 | 兄 |
速さ(m/分) | 55 | 75 |
時間(分) | x+4 | x |
道のり(m) | 55(x+4) | 75x |
追いつくときは、道のりが同じなので
太郎の歩いた道のり = 兄の歩いた道のり で式をつくる。
行きにかかった時間をx分とする。
4×x60=3×x+1360
【答】39分
【解説】行きの時間をx分とすると帰りの時間は(x+13)分、速さが毎時kmで表されているので分を時間に直すと, x分はx60時間, (x+13)分は x+1360 時間である。道のり =時間×速さなので | 行き | 帰り |
速さ(km/時) | 4 | 3 |
時間(時間) | x60 | x+1360 |
道のり(km) | 4×x60 | 3×x+1360 |
往復は行きと帰りの道のりが同じなので 行きの道のり=帰りの道のり で式をつくる。 たかしくんの家から公園までをxmとする。
x85=1300-x65-2
【答】663m
【解説】たかし家〜公園〜よしこ家が1300mなのでたかし家〜公園をxmとするとよしこ家〜公園は(1300-x)mとなる。時間=道のり÷速さなので | たかし家 〜公園 | よしこ家 〜公園 |
速さ(m/分) | 85 | 65 |
時間(分) | x85 | 1300-x65 |
道のり(m) | x | 1300-x |
たかしが2分早くついたのでたかしの時間 = よしこの時間-2である。 出発してからの時間をx分とする。
60x-40x=2000
【答】100分後
【解説】求める時間を分にすると,速さの単位を時速kmから分速mに直す必要がある。時速3.6kmは3.6×1000÷60=60 分速60m,時速2.4kmは2.4×1000÷60=40 分速40m
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
この場合,姉と弟の歩いた道のりの差が2000mになったときである。
道のり=速さ×時間なので
姉の歩いた道のり =60x
弟の歩いた道のり= 40x
これらの差が1周分なので
60x-40x=2000
これを解くと
x=100
全校生徒数をx人とする
52100x-48100x=13
【答】325人
【解説】女子が48%なので100-48=52%が男子である。全校生徒をx人とすると女子は48100x、男子は52100xとなる。男子が女子より13人多いので男子の人数-女子の人数=13で式をつくる。
定価をx円とする
710x=800×1410
【答】1600円
原価をx円とする
148100x-900=112100x
【答】2500円
【解説】原価をx円とすると原価の48%の利益を見込んでつけた定価は148100x円である。そこから900円引きで売った売値は(148100x-900)円となる。
また、原価の12%の利益になったとの記述から売値は 112100xとも表せる。2通りであらわした売値を=で結んで式をつくる。