答表示

中1 方程式の利用 演習

文章題 連続する整数 ≫連続する2つの偶数があり、その和は154である。この2つの偶数を求めよ。
小さい方の偶数をxとする。
x+(x+2)=154
【答】76,78
【解説】偶数は2,4,6,・・・と2ずつ大きくなるので、連続する2つの偶数はx, x+2と表せる。
文章題 2けたの自然数 ≫一の位の数が十の位の数の半分より2大きい2けたの自然数がある。この2けたの自然数の一の位と十の位を入れ替えた数をもとの自然数にたすと154になる。もとの2けたの自然数を求めよ。
十の位の数をxとする。
12x+2+10x+10(12x+2)+x=154
【答】68
【解説】一の位の数が十の位の数の半分より2大きいので、十の位の数をxとすると一の位の数は12x+2となる。2けたの自然数は12x+2+10x、一の位と十の位を入れ替えるとx+10(12x+2)となる。
文章題 過不足の問題 ≫あるクラスでクラス会をする。一人1000円ずつ集めると1800円足りない。一人1200円ずつ集めると2600円あまる。クラス会にかかる費用を求めよ。
生徒の人数をx人とする。
1000x+1800=1200x-2600
【答】23800円
【解説】求めるものはクラス会の費用だが、人数をxとするほうが式をたてるのが容易である。
1000円ずつ集めて1800円たりないので、1000xに1800を足すと目標金額になる。つまり目標金額は1000x+1800(円)である。
1200円ずつ集めて2600円あまるので、1200xから余った金額を引いた1200x-2600(円)が目標金額となる。
1000x+1800=1200x-2600を解くとx=22となるが、求めるものはクラス会の費用なので1000x+1800に代入して 1000×22+1800 = 23800
文章題 平均点の問題 ≫男子16人、女子17人のクラスで身長を測ったらクラス全体の平均が158.3㎝でした。男子の平均は女子平均より3.3㎝高かった。男子の身長の平均は何㎝でしょうか。
男子の身長の平均をxcmとする。
16x+17(x-3.3)=158.3×33
【答】160cm
【解説】男子の平均点をx点とすると女子はそれより3.7点高いので(x+3.7)点である。
平均点×人数 = 合計点なので
男子女子クラス
人数172037
平均点xx+3.777
合計点17x20(x+3.7)77×37
男子の合計点+女子の合計点 = クラスの合計点 から方程式をつくる。
文章題 速さ 追いつく1 ≫花子さんが家をでて毎分45mで歩いていった。その10分後に母が毎分120mで花子さんを追いかけた。母が花子さんに追いつくのは花子さんが家を出てから何分後か。
花子さんが家を出てからの時間をx分とする。
45x=120(x-10)
【答】16分後 
【解説】花子さんが家を出てからの時間をx分とすると、母は10分後に家を出ているので、母の時間は花子さんより10分短い(x-10)分である。道のり=時間×速さなので
花子
速さ(m/分)45120
時間(分)xx-10
道のり(m)45x120(x-10)
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。
文章題 速さ 往復 ≫A町からB町までを往復した。行きは毎分80mで、帰りは毎分70mの速さで歩いたら往復にかかった時間は60分だった。A町からB町までの道のりは何mか。
A町からB町までをx mとする。
x80+x70=60
【答】2240m
【解説】往復では行きと帰りの道のりの長さは同じなので両方xm, 時間 = 道のり÷速さなので
 行き帰り
速さ(m/分)8070
時間(分)x80x70
道のり(m)xx
合計時間が60分なので、行きの時間+帰りの時間 =60 となる。
文章題 速さが変わる問題 ≫A君が家から1600m離れた駅まで行った。自転車で7分走ったところでパンクしたため、そこから5分歩いて駅まで行った。自転車の速さは毎分何mか。ただし、自転車の速さは歩く速さより毎分100m速いとする。
自転車の速さを毎分xmとする。
7x+5(x-100)=1600
【答】毎分175m
文章題 池の周り ≫池の周りに1周2000mの道がある。姉と弟が同時に同じ場所から出発して同じ方向に歩く。姉は時速3.6km, 弟は時速2.4kmの場合、はじめて姉が弟を追い越すのは出発から何分後か。
出発してからの時間をx分とする。
60x-40x=2000
【答】100分後
【解説】求める時間を分にすると,速さの単位を時速kmから分速mに直す必要がある。時速3.6kmは3.6×1000÷60=60 分速60m,時速2.4kmは2.4×1000÷60=40 分速40m
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
この場合,姉と弟の歩いた道のりの差が2000mになったときである。
道のり=速さ×時間なので
姉の歩いた道のり =60x
弟の歩いた道のり= 40x
これらの差が1周分なので
60x-40x=2000
これを解くと
x=100
文章題 割合 ≫ある中学校の全生徒数は323人である。女子の人数が男子の人数の90%のとき、この中学校の男子の人数を求めよ。
男子の人数をx人とする
x+90100x=323
【答】170人
文章題 割引・割増 ≫ある品物を仕入れて、原価の6割の利益を見込んで定価をつけた。定価では売れなかったので240円引きで売った。品物1個につき原価の4割の利益になった。原価を求めよ。
原価をx円とする
1610x-240=1410x
【答】1200円
【解説】原価をx円とすると原価の6割の利益を見込んでつけた定価は1610x円である。そこから240円引きで売った売値は(1610x-240)円となる。
また、原価の4割の利益になったとの記述から売値は 1410xとも表せる。2通りであらわした売値を=で結んで式をつくる。
文章題 濃度 ≫ 濃度のわからない食塩水Aと9%の食塩水Bがある。Aを550gとBを110g混ぜたら4%の食塩水になった。食塩水Aの濃度を求めよ。 【式】食塩水Aの濃度をx%とする。
  5.5x+9.9=26.4
【答】3%
解答 表示
小さい方の偶数をxとする。
x+(x+2)=154
【答】76,78
【解説】偶数は2,4,6,・・・と2ずつ大きくなるので、連続する2つの偶数はx, x+2と表せる。
十の位の数をxとする。
12x+2+10x+10(12x+2)+x=154
【答】68
【解説】一の位の数が十の位の数の半分より2大きいので、十の位の数をxとすると一の位の数は12x+2となる。2けたの自然数は12x+2+10x、一の位と十の位を入れ替えるとx+10(12x+2)となる。
生徒の人数をx人とする。
1000x+1800=1200x-2600
【答】23800円
【解説】求めるものはクラス会の費用だが、人数をxとするほうが式をたてるのが容易である。
1000円ずつ集めて1800円たりないので、1000xに1800を足すと目標金額になる。つまり目標金額は1000x+1800(円)である。
1200円ずつ集めて2600円あまるので、1200xから余った金額を引いた1200x-2600(円)が目標金額となる。
1000x+1800=1200x-2600を解くとx=22となるが、求めるものはクラス会の費用なので1000x+1800に代入して 1000×22+1800 = 23800
男子の身長の平均をxcmとする。
16x+17(x-3.3)=158.3×33
【答】160cm
【解説】男子の平均点をx点とすると女子はそれより3.7点高いので(x+3.7)点である。
平均点×人数 = 合計点なので
男子女子クラス
人数172037
平均点xx+3.777
合計点17x20(x+3.7)77×37
男子の合計点+女子の合計点 = クラスの合計点 から方程式をつくる。
花子さんが家を出てからの時間をx分とする。
45x=120(x-10)
【答】16分後 
【解説】花子さんが家を出てからの時間をx分とすると、母は10分後に家を出ているので、母の時間は花子さんより10分短い(x-10)分である。道のり=時間×速さなので
花子
速さ(m/分)45120
時間(分)xx-10
道のり(m)45x120(x-10)
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。
A町からB町までをx mとする。
x80+x70=60
【答】2240m
【解説】往復では行きと帰りの道のりの長さは同じなので両方xm, 時間 = 道のり÷速さなので
 行き帰り
速さ(m/分)8070
時間(分)x80x70
道のり(m)xx
合計時間が60分なので、行きの時間+帰りの時間 =60 となる。
自転車の速さを毎分xmとする。
7x+5(x-100)=1600
【答】毎分175m
出発してからの時間をx分とする。
60x-40x=2000
【答】100分後
【解説】求める時間を分にすると,速さの単位を時速kmから分速mに直す必要がある。時速3.6kmは3.6×1000÷60=60 分速60m,時速2.4kmは2.4×1000÷60=40 分速40m
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
この場合,姉と弟の歩いた道のりの差が2000mになったときである。
道のり=速さ×時間なので
姉の歩いた道のり =60x
弟の歩いた道のり= 40x
これらの差が1周分なので
60x-40x=2000
これを解くと
x=100
男子の人数をx人とする
x+90100x=323
【答】170人
原価をx円とする
1610x-240=1410x
【答】1200円
【解説】原価をx円とすると原価の6割の利益を見込んでつけた定価は1610x円である。そこから240円引きで売った売値は(1610x-240)円となる。
また、原価の4割の利益になったとの記述から売値は 1410xとも表せる。2通りであらわした売値を=で結んで式をつくる。
【式】食塩水Aの濃度をx%とする。
  5.5x+9.9=26.4
【答】3%
© 2006- 2022 SyuwaGakuin All Rights Reserved pc