答表示

中1 方程式の利用 演習

文章題 連続する整数 ≫連続する2つの奇数があり、その和は56である。この2つの奇数を求めよ。
小さい方の奇数をxとする。
x+(x+2)=56
【答】27,29
【解説】奇数は1,3,5,7・・・と2ずつ大きくなるので連続する2つの奇数はx, x+2と表せる。
文章題 2けたの自然数 ≫一の位の数が十の位の数の2倍より1大きい2けたの自然数がある。この2けたの自然数の一の位と十の位を入れ替えた数をもとの自然数にたすと110になる。もとの2けたの自然数を求めよ。
十の位の数をxとする。
2x+1+10x+10(2x+1)+x=110
【答】37
【解説】一の位の数が十の位の数の2倍より1大きいので、十の位の数をxとすると一の位の数は2x+1である。2けたの自然数は2x+1+10x,一の位と十の位の数を入れ替えると10(2x+1)+xとなる。
文章題 過不足の問題 ≫あめを何人かの生徒に分ける。一人4個ずつ分けると10個あまり、一人6個ずつ分けると8個足りない。生徒の人数を求めなさい。
生徒の人数をx人とする
4x+10=6x-8
【答】9人,78
【解説】子供の数をxとして、折り紙の全枚数を2通りで表す。
一人の
枚数
67
人数xx
配る数6x7x
過不足+8-10
折り紙の
全枚数
6x+87x-10
4枚ずつ配って8枚あまっているので、折り紙の全枚数を表すと4x+8、5枚配ろうとして10枚足りないので、5x-10が全枚数である。折り紙の全枚数は同じものを表しているので=(等号)でつなげば方程式になる。
文章題 平均点の問題 ≫男子18人、女子21人のクラスでクラス全体の平均点が67点だった。男子のは女子の平均点より13点低かった。男子の平均点を求めよ。
男子の平均点をx点とする。
18x+21(x+13)=67×39
【答】60点
【解説】男子の平均点をx点とすると女子はそれより3.7点高いので(x+3.7)点である。
平均点×人数 = 合計点なので
男子女子クラス
人数172037
平均点xx+3.777
合計点17x20(x+3.7)77×37
男子の合計点+女子の合計点 = クラスの合計点 から方程式をつくる。
文章題 速さ 追いつく1 ≫花子さんが家をでて毎分75mで歩いていった。その6分後に母が毎分100mで花子さんを追いかけた。母が花子さんに追いつくのは花子さんが家を出てから何分後か。
花子さんが家を出てからの時間をx分とする。
75x=100(x-6)
【答】24分後 
【解説】花子さんが家を出てからの時間をx分とすると、母は6分後に家を出ているので、母の時間は花子さんより6分短い(x-6)分である。道のり=時間×速さなので
花子
速さ(m/分)75100
時間(分)xx-6
道のり(m)75x100(x-6)
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。
文章題 速さ 往復 ≫A町とB町を往復した。行きは毎分70m、帰りは毎分60mで歩くと、歩いていた時間は帰りのほうが8分長かった。行きにかかった時間は何分か。
行きにかかった時間をx分とする。
70x=60(x+8)
【答】48分
【解説】行きの時間をx分とすると帰りの時間は(x+8)分、道のり =時間×速さなので
 行き帰り
速さ(m/分)7060
時間(分)xx+8
道のり(m)70x60(x+8)
往復は行きと帰りの道のりが同じなので 行きの道のり=帰りの道のり で式をつくる。
文章題 速さが変わる問題 ≫A 君の家とB君の家は1.1㎞離れている。A君が8:00に家を出て毎分70mでB君の家へ向かいB君は8:08分に家を出て分速65mでB君の家に向かった。二人が出会うのは8時何分か。
8時x分に出会ったとする。
70x+65(x-8)=1100
【答】8時12分
【解説】A君が出会うまでに歩いた時間をx分とすると、B君は8分遅れて出発しているので歩いた時間は(x-8)分である。道のり=時間×速さなので
 AB
速さ(m/分)7065
時間(分)xx-8
道のり(m)70x65(x-8)
2人はAの家からBの家までの途中で出会うので、2人が歩いた道のりの合計が1100mである。
文章題 池の周り ≫池の周りに1周800mの道がある。兄と妹が同時に同じ場所から出発して同じ方向に歩く。兄は分速96m, 妹は分速64mの場合、はじめて兄が妹を追い越すのは出発から何分後か。
出発してからの時間をx分とする。
96x-64x=800
【答】25分後
【解説】同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
この場合,兄と妹の歩いた道のりの差が800mになったときである。
道のり=速さ×時間なので
兄の歩いた道のり = 96x
妹の歩いた道のり=64x
これらの差が1周分なので
96x-64x=800
これを解くと
x=25
文章題 割合 ≫ある中学校では全校生徒の48%が女子である。男子の人数は女子の人数より13人多い。この学校の全校生徒の人数を求めよ。
全校生徒数をx人とする
52100x-48100x=13
【答】325人
【解説】女子が48%なので100-48=52%が男子である。全校生徒をx人とすると女子は48100x、男子は52100xとなる。男子が女子より13人多いので男子の人数-女子の人数=13で式をつくる。
文章題 割引・割増 ≫ある品物を仕入れて、原価の4割の利益を見込んで定価をつけた。定価では全く売れなかったので定価の2割引きで売った。品物1個につき180円の利益になった。原価を求めよ。
原価をx円とする
810×1410x=x+180
【答】1500円
【解説】原価をx円とすると、原価の4割の利益を見込んだ定価は1410x円である。この定価の2割引きの売値は1410810 円となる。
売値 = 原価+利益から式をつくる。
文章題 濃度 ≫ある品物を仕入れて、原価の8割の利益を見込んで定価をつけた。定価では全く売れなかったので250円引きで売った。品物1個につき70円の利益になった。原価を求めよ。
原価をx円とする
1810x-250=x+70
【答】400円
【解説】原価をx円とすると、原価の8割の利益を見込んでつけた定価は1810x円である。
売値はここか250円引いたものなので、(1810x-250)円となる。
売値 = 原価+利益から式をつくる
解答 表示
小さい方の奇数をxとする。
x+(x+2)=56
【答】27,29
【解説】奇数は1,3,5,7・・・と2ずつ大きくなるので連続する2つの奇数はx, x+2と表せる。
十の位の数をxとする。
2x+1+10x+10(2x+1)+x=110
【答】37
【解説】一の位の数が十の位の数の2倍より1大きいので、十の位の数をxとすると一の位の数は2x+1である。2けたの自然数は2x+1+10x,一の位と十の位の数を入れ替えると10(2x+1)+xとなる。
生徒の人数をx人とする
4x+10=6x-8
【答】9人,78
【解説】子供の数をxとして、折り紙の全枚数を2通りで表す。
一人の
枚数
67
人数xx
配る数6x7x
過不足+8-10
折り紙の
全枚数
6x+87x-10
4枚ずつ配って8枚あまっているので、折り紙の全枚数を表すと4x+8、5枚配ろうとして10枚足りないので、5x-10が全枚数である。折り紙の全枚数は同じものを表しているので=(等号)でつなげば方程式になる。
男子の平均点をx点とする。
18x+21(x+13)=67×39
【答】60点
【解説】男子の平均点をx点とすると女子はそれより3.7点高いので(x+3.7)点である。
平均点×人数 = 合計点なので
男子女子クラス
人数172037
平均点xx+3.777
合計点17x20(x+3.7)77×37
男子の合計点+女子の合計点 = クラスの合計点 から方程式をつくる。
花子さんが家を出てからの時間をx分とする。
75x=100(x-6)
【答】24分後 
【解説】花子さんが家を出てからの時間をx分とすると、母は6分後に家を出ているので、母の時間は花子さんより6分短い(x-6)分である。道のり=時間×速さなので
花子
速さ(m/分)75100
時間(分)xx-6
道のり(m)75x100(x-6)
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。
行きにかかった時間をx分とする。
70x=60(x+8)
【答】48分
【解説】行きの時間をx分とすると帰りの時間は(x+8)分、道のり =時間×速さなので
 行き帰り
速さ(m/分)7060
時間(分)xx+8
道のり(m)70x60(x+8)
往復は行きと帰りの道のりが同じなので 行きの道のり=帰りの道のり で式をつくる。
8時x分に出会ったとする。
70x+65(x-8)=1100
【答】8時12分
【解説】A君が出会うまでに歩いた時間をx分とすると、B君は8分遅れて出発しているので歩いた時間は(x-8)分である。道のり=時間×速さなので
 AB
速さ(m/分)7065
時間(分)xx-8
道のり(m)70x65(x-8)
2人はAの家からBの家までの途中で出会うので、2人が歩いた道のりの合計が1100mである。
出発してからの時間をx分とする。
96x-64x=800
【答】25分後
【解説】同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
この場合,兄と妹の歩いた道のりの差が800mになったときである。
道のり=速さ×時間なので
兄の歩いた道のり = 96x
妹の歩いた道のり=64x
これらの差が1周分なので
96x-64x=800
これを解くと
x=25
全校生徒数をx人とする
52100x-48100x=13
【答】325人
【解説】女子が48%なので100-48=52%が男子である。全校生徒をx人とすると女子は48100x、男子は52100xとなる。男子が女子より13人多いので男子の人数-女子の人数=13で式をつくる。
原価をx円とする
810×1410x=x+180
【答】1500円
【解説】原価をx円とすると、原価の4割の利益を見込んだ定価は1410x円である。この定価の2割引きの売値は1410810 円となる。
売値 = 原価+利益から式をつくる。
原価をx円とする
1810x-250=x+70
【答】400円
【解説】原価をx円とすると、原価の8割の利益を見込んでつけた定価は1810x円である。
売値はここか250円引いたものなので、(1810x-250)円となる。
売値 = 原価+利益から式をつくる
© 2006- 2022 SyuwaGakuin All Rights Reserved pc