小さい方の整数をxとする。
x+(x+1)=-29
【答】-15,-14
【解説】整数は1ずつ大きくなるので、xの次はx+1である。よって連続する2つの自然数はxとx+1と表せる。
一の位の数をxとする。
x+10(x-4)+10x+x-4=110
【答】37
【解説】一の位が十の位より4大きいので、一の位がxなら十の位は(x-4)である。
2けたの自然数はx + 10(x-4)となり、一の位と十の位を入れ替えると10x + (x-4)となる。
子どもの人数をxとする。
5x+14=6x-10
【答】134個
【解説】求めるものはアメの数だが、こどもの人数をxとしたほうが式がたてやすい。一人の 個数 | 5 | 6 |
| 人数 | x | x |
| 配る数 | 5x | 6x |
| 過不足 | +14 | -10 |
アメの 全個数 | 5x+14 | 6x-10 |
アメの全個数は同じものを表すので=(等号)で結べば方程式になる。
方程式を解いてx=24となるが、求めるものがアメのかずなので 5x+14に代入して 5×24+14=134
よって答が134個となる。 男子の人数をx人とする。
63x+70(35-x)=66.4×35
【答】18人
【解説】32人のクラスで、男子の人数がx人なら、女子の人数は(32-x)人と表せる。また、平均点×人数=合計点なので| | 男子 | 女子 | クラス |
| 人数 | x | 32-x | 32 |
| 平均点 | 60 | 68 | 64.5 |
| 合計点 | 60x | 68(32-x) | 64.5×32 |
男子の合計点 + 女子の合計点 = クラスの合計点 から方程式をつくる 花子さんが家を出てからの時間をx分とする。
75x=100(x-6)
【答】24分後
【解説】花子さんが家を出てからの時間をx分とすると、母は6分後に家を出ているので、母の時間は花子さんより6分短い(x-6)分である。道のり=時間×速さなので| | 花子 | 母 |
| 速さ(m/分) | 75 | 100 |
| 時間(分) | x | x-6 |
| 道のり(m) | 75x | 100(x-6) |
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。 行きにかかった時間をx分とする。
4×x60=3×x+1360
【答】39分
【解説】行きの時間をx分とすると帰りの時間は(x+13)分、速さが毎時kmで表されているので分を時間に直すと, x分はx60時間, (x+13)分は x+1360 時間である。道のり =時間×速さなので| | 行き | 帰り |
| 速さ(km/時) | 4 | 3 |
| 時間(時間) | x60 | x+1360 |
| 道のり(km) | 4×x60 | 3×x+1360 |
往復は行きと帰りの道のりが同じなので 行きの道のり=帰りの道のり で式をつくる。 A君が家を出てからx分後に出会ったとする。
460x+360(x-5)=32
【答】9時15分
B君の速さを毎分xmとする。
15(x+80)+15x=60(x+80)-60x
【答】A君毎分200m, B君毎分120m
【解説】A君はB君より毎分80mだけ速いので,A君の速さは 毎分(x+80)m
反対方向に回る場合, 二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
道のり=速さ×時間より
15(x+80)+15x=1周の道のり
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越すので
60(x+80)-60x=1周のみちのり
15(x+80)+15xと60(x+80)-60xはともに1周の道のりを表すので = で結ぶと
15(x+80)+15x=60(x+80)-60xは
これを解くとx=120これがB君の速さなので A君の速さは 120+80=200
全男子数をx人とする
310x+210(460-x)=116
【答】240人
【解説】全男子数をx人とすると、全女子数は(460-x)人である。
自転車通学の男子は310x、女子は210(460-x)となる。
これらの合計が116となることから方程式をつくる。
定価をx円とする
610x=125100×900
【答】1875円
原価をx円とする
800×910=144100x
【答】500円