小さい方の偶数をxとする。
x+(x+2)=6
【答】2,4
【解説】偶数は2,4,6,・・・と2ずつ大きくなるので、連続する2つの偶数はx, x+2と表せる。
十の位の数をxとする。
20x+x-(2x+10x)=27
【答】36
【解説】一の位が十の位の2倍なので十の位の数をxとすると一の位は2xとなる。すると2けたの自然数は2x+10x、一の位と十の位を入れ替えた数は20x+xとなる。
クラスの人数をx人とする。
400x+900=500x-1700
【答】26人
【解説】クラスの人数をx人とすると、一人400円ずつだと400x円集まるが、900円足りないので、400x+900が記念品の値段である。
また、500円ずつ集めた500xでは1700円あまるので、500x-1700が記念品の値段となる。
2通りで表した記念品の値段を=(等号)で結んで方程式とする。
男子の人数をx人とする。
63x+70(35-x)=66.4×35
【答】18人
【解説】32人のクラスで、男子の人数がx人なら、女子の人数は(32-x)人と表せる。また、平均点×人数=合計点なので| | 男子 | 女子 | クラス |
| 人数 | x | 32-x | 32 |
| 平均点 | 60 | 68 | 64.5 |
| 合計点 | 60x | 68(32-x) | 64.5×32 |
男子の合計点 + 女子の合計点 = クラスの合計点 から方程式をつくる 花子さんが家を出てからの時間をx分とする。
45x=120(x-10)
【答】16分後
【解説】花子さんが家を出てからの時間をx分とすると、母は10分後に家を出ているので、母の時間は花子さんより10分短い(x-10)分である。道のり=時間×速さなので| | 花子 | 母 |
| 速さ(m/分) | 45 | 120 |
| 時間(分) | x | x-10 |
| 道のり(m) | 45x | 120(x-10) |
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。 行きにかかった時間をx分とする。
280x=210(x+9)
【答】27分
【解説】行きの時間をx分とすると帰りの時間は(x+9)分、道のり =時間×速さなので| | 行き | 帰り |
| 速さ(m/分) | 280 | 210 |
| 時間(分) | x | x+9 |
| 道のり(m) | 280x | 210(x+9) |
往復は行きと帰りの道のりが同じなので 行きの道のり=帰りの道のり で式をつくる。 A君が家を出てからx分後に出会ったとする。
460x+360(x-5)=32
【答】9時15分
出発してからの時間をx時間とする。
4x-3x=2
【答】2時間後
【解説】同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
この場合,兄と妹の歩いた道のりの差が2kmになったときである。
道のり=速さ×時間なので
兄の歩いた道のり = 4x
妹の歩いた道のり=3x
これらの差が1周分なので
4x-3x=2
これを解くと
x=2
全男子数をx人とする
12100x+5100(335-x)=29
【答】175人
【解説】全男子数をx人とすると、全女子数は(335-x)人である。
自転車通学の男子は12100x、女子は5100(335-x)となる。
これらの合計が29となることから方程式をつくる。
原価をx円とする
750×70100=105100x
【答】500円
原価をx円とする
1810x-250=x+70
【答】400円
【解説】原価をx円とすると、原価の8割の利益を見込んでつけた定価は1810x円である。
売値はここか250円引いたものなので、(1810x-250)円となる。
売値 = 原価+利益から式をつくる