小さい方の偶数をxとする。
x+(x+2)=154
【答】76,78
【解説】偶数は2,4,6,・・・と2ずつ大きくなるので、連続する2つの偶数はx, x+2と表せる。
十の位の数をxとする。
12x+2+10x+10(12x+2)+x=154
【答】86
【解説】一の位の数が十の位の数の半分より2大きいので、十の位の数をxとすると一の位の数は12x+2となる。2けたの自然数は12x+2+10x、一の位と十の位を入れ替えるとx+10(12x+2)となる。
生徒の人数をx人とする
4x+10=6x-8
【答】9人,78
【解説】子供の数をxとして、折り紙の全枚数を2通りで表す。一人の 枚数 | 6 | 7 |
| 人数 | x | x |
| 配る数 | 6x | 7x |
| 過不足 | +8 | -10 |
折り紙の 全枚数 | 6x+8 | 7x-10 |
4枚ずつ配って8枚あまっているので、折り紙の全枚数を表すと4x+8、5枚配ろうとして10枚足りないので、5x-10が全枚数である。折り紙の全枚数は同じものを表しているので=(等号)でつなげば方程式になる。 男子の平均点をx点とする。
18x+21(x+13)=67×39
【答】60点
【解説】男子の平均点をx点とすると女子はそれより3.7点高いので(x+3.7)点である。
平均点×人数 = 合計点なので| | 男子 | 女子 | クラス |
| 人数 | 17 | 20 | 37 |
| 平均点 | x | x+3.7 | 77 |
| 合計点 | 17x | 20(x+3.7) | 77×37 |
男子の合計点+女子の合計点 = クラスの合計点 から方程式をつくる。 花子さんが家を出てからの時間をx分とする。
75x=100(x-6)
【答】24分後
【解説】花子さんが家を出てからの時間をx分とすると、母は6分後に家を出ているので、母の時間は花子さんより6分短い(x-6)分である。道のり=時間×速さなので| | 花子 | 母 |
| 速さ(m/分) | 75 | 100 |
| 時間(分) | x | x-6 |
| 道のり(m) | 75x | 100(x-6) |
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。 行きの速さを毎分xmとする。
40x=50(x-20)
【答】毎分100m
【解説】帰りは行きより毎分20m遅いので、行きの速さをxm/分とすると帰りは(x-20)m/分となる。道のり=時間×速さなので| | 行き | 帰り |
| 速さ(m/分) | x | x-20 |
| 時間(分) | 40 | 50 |
| 道のり(m) | 40x | 50(x-20) |
往復は行きと帰りの道のりが同じなので 行きの道のり = 帰りの道のりで式ができる。 A町からB町までの道のりをxkmとする。
x4+x+0.73.5=46260
【答】14km
出発してからの時間をx分とする。
96x-64x=800
【答】25分後
【解説】同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
この場合,兄と妹の歩いた道のりの差が800mになったときである。
道のり=速さ×時間なので
兄の歩いた道のり = 96x
妹の歩いた道のり=64x
これらの差が1周分なので
96x-64x=800
これを解くと
x=25
全男子数をx人とする
310x+210(460-x)=116
【答】240人
【解説】全男子数をx人とすると、全女子数は(460-x)人である。
自転車通学の男子は310x、女子は210(460-x)となる。
これらの合計が116となることから方程式をつくる。
原価をx円とする
1810x-250=x+70
【答】400円
【解説】原価をx円とすると、原価の8割の利益を見込んでつけた定価は1810x円である。
売値はここか250円引いたものなので、(1810x-250)円となる。
売値 = 原価+利益から式をつくる
原価をx円とする
610×1710x=x+10
【答】500円
【解説】原価をx円とすると、原価の7割の利益を見込んだ定価は1710x円である。この定価の4割引きの売値は1710x× 610 円となる。
売値 = 原価+利益 から式をつくる。