答表示

中1 方程式の利用 演習

文章題 連続する整数 ≫連続する2つの奇数があり、その和は56である。この2つの奇数を求めよ。
小さい方の奇数をxとする。
x+(x+2)=56
【答】27,29
【解説】奇数は1,3,5,7・・・と2ずつ大きくなるので連続する2つの奇数はx, x+2と表せる。
文章題 2けたの自然数 ≫一の位の数が十の位の数より7大きい2けたの自然数がある。この自然数の一の位の数と十の位の数を入れ替えた数をもとの数にたすと99になる。もとの自然数を求めよ。
一の位の数をxとする。
x+10(x-7)+10x+x-7=99
【答】18
【解説】一の位が十の位より7大きいので、一の位がxなら十の位は(x-7)である。
2けたの自然数はx + 10(x-7)となり、一の位と十の位を入れ替えると10x + (x-7)となる。
文章題 過不足の問題 ≫何人かの子どもにアメを配る。一人に7個ずつ配ると11個あまり、一人に9個ずつ配ると15個足りない。アメの数を求めよ。
子どもの人数をxとする。
7x+11=9x-15
【答】102個
【解説】求めるものはアメの数だが、子どもの人数をxにしたほうが式がたてやすい。
x人に7個ずつ配ると7x, 11個あまるのでアメの数は7x+11
x人に9個ずつ配ると9x, 15個足りないのでアメの数は9x-15
7x+11と9x-15はどちらもアメの数を表しているので=(等号)で結べる。
7x+11=9x-15
これを解くとx=13
求めるものはアメの数なので 7x+11に代入して 7×13+11=102
文章題 平均点の問題 ≫男子16人、女子17人のクラスで身長を測ったらクラス全体の平均が158.3㎝でした。男子の平均は女子平均より3.3㎝高かった。男子の身長の平均は何㎝でしょうか。
男子の身長の平均をxcmとする。
16x+17(x-3.3)=158.3×33
【答】160cm
【解説】男子の平均点をx点とすると女子はそれより3.7点高いので(x+3.7)点である。
平均点×人数 = 合計点なので
男子女子クラス
人数172037
平均点xx+3.777
合計点17x20(x+3.7)77×37
男子の合計点+女子の合計点 = クラスの合計点 から方程式をつくる。
文章題 速さ 追いつく1 ≫花子さんが家をでて毎分75mで歩いていった。その6分後に母が毎分100mで花子さんを追いかけた。母が花子さんに追いつくのは花子さんが家を出てから何分後か。
花子さんが家を出てからの時間をx分とする。
75x=100(x-6)
【答】24分後 
【解説】花子さんが家を出てからの時間をx分とすると、母は6分後に家を出ているので、母の時間は花子さんより6分短い(x-6)分である。道のり=時間×速さなので
花子
速さ(m/分)75100
時間(分)xx-6
道のり(m)75x100(x-6)
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。
文章題 速さ 往復 ≫A町からB町を往復した。行きは毎時4㎞で帰りは毎時3㎞で歩いたら、帰りのほうが13分多くかかった。行きにかかった時間は何分か。
行きにかかった時間をx分とする。
x60=3×x+1360
【答】39分
【解説】行きの時間をx分とすると帰りの時間は(x+13)分、速さが毎時kmで表されているので分を時間に直すと, x分はx60時間, (x+13)分は x+1360 時間である。道のり =時間×速さなので
 行き帰り
速さ(km/時)43
時間(時間)x60x+1360
道のり(km)x60x+1360
往復は行きと帰りの道のりが同じなので 行きの道のり=帰りの道のり で式をつくる。
文章題 速さが変わる問題 ≫A町からB町までは時速4㎞で歩き、B町からC町までは時速3.5㎞で歩いたら、合計で7時間42分かかった。B町からC町までの道のりはA町からB町までの道のり0.7km遠い。A町からB町までの道のりは何kmか。
A町からB町までの道のりをxkmとする。
x4+x+0.73.5=46260
【答】14km
文章題 池の周り ≫池の周りを1周する道がある。A君とB君がこの道を自転車で走る。同じ地点から同時に出発して反対方向に回ると9分後にはじめて出会い, 同じ方向に回ると50分でA君がB君をはじめて追い越す。二人は常に一定の速さで走るものとし, A君の速さが毎分236mのとき, B君の速さは毎分何mか求めよ。
B君の速さを毎分xmとする。
9×236+9x=50×236-50x
【答】毎分164m
【解説】反対方向に回る場合, 二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
道のり=速さ×時間より
9×236+9x=1周の道のり
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越すので
50×236-50x=1周のみちのり
9×236+9xと50×236-50xはともに1周の道のりを表すので = で結ぶと
9×236-9x=50×236-50x
これを解くとx=164
文章題 割合 ≫全校生徒460人のうち、自転車通学の割合は男子が全男子数の3割で、女子は全女子数の2割である。 自転車通学の人数は男女合わせて116人である。この学校の全男子数を求めよ。
全男子数をx人とする
310x+210(460-x)=116
【答】240人
【解説】全男子数をx人とすると、全女子数は(460-x)人である。
自転車通学の男子は310x、女子は210(460-x)となる。
これらの合計が116となることから方程式をつくる。
文章題 割引・割増 ≫定価1500円の商品を定価の2割引で売ったが、まだ原価の2割の利益があった。この商品の原価を求めよ。
原価をx円とする
810×1500 =1210x
【答】1000円
文章題 濃度 ≫ 12%の食塩水が90gある。これに3%の食塩水と4%の食塩水を混ぜた結果, 6%の食塩水が320gできた。3%の食塩水と4%の食塩水はそれぞれ何gずつ混ぜたのか求めよ。【式】3%の食塩水をxg混ぜるとする
 10.8+3100x+4100(230-x)=19.2
【答】3%が80g, 4%が150g
解答 表示
小さい方の奇数をxとする。
x+(x+2)=56
【答】27,29
【解説】奇数は1,3,5,7・・・と2ずつ大きくなるので連続する2つの奇数はx, x+2と表せる。
一の位の数をxとする。
x+10(x-7)+10x+x-7=99
【答】18
【解説】一の位が十の位より7大きいので、一の位がxなら十の位は(x-7)である。
2けたの自然数はx + 10(x-7)となり、一の位と十の位を入れ替えると10x + (x-7)となる。
子どもの人数をxとする。
7x+11=9x-15
【答】102個
【解説】求めるものはアメの数だが、子どもの人数をxにしたほうが式がたてやすい。
x人に7個ずつ配ると7x, 11個あまるのでアメの数は7x+11
x人に9個ずつ配ると9x, 15個足りないのでアメの数は9x-15
7x+11と9x-15はどちらもアメの数を表しているので=(等号)で結べる。
7x+11=9x-15
これを解くとx=13
求めるものはアメの数なので 7x+11に代入して 7×13+11=102
男子の身長の平均をxcmとする。
16x+17(x-3.3)=158.3×33
【答】160cm
【解説】男子の平均点をx点とすると女子はそれより3.7点高いので(x+3.7)点である。
平均点×人数 = 合計点なので
男子女子クラス
人数172037
平均点xx+3.777
合計点17x20(x+3.7)77×37
男子の合計点+女子の合計点 = クラスの合計点 から方程式をつくる。
花子さんが家を出てからの時間をx分とする。
75x=100(x-6)
【答】24分後 
【解説】花子さんが家を出てからの時間をx分とすると、母は6分後に家を出ているので、母の時間は花子さんより6分短い(x-6)分である。道のり=時間×速さなので
花子
速さ(m/分)75100
時間(分)xx-6
道のり(m)75x100(x-6)
追いつくときは、道のりが同じなので
花子の歩いた道のり = 母の歩いた道のり で式をつくる。
行きにかかった時間をx分とする。
x60=3×x+1360
【答】39分
【解説】行きの時間をx分とすると帰りの時間は(x+13)分、速さが毎時kmで表されているので分を時間に直すと, x分はx60時間, (x+13)分は x+1360 時間である。道のり =時間×速さなので
 行き帰り
速さ(km/時)43
時間(時間)x60x+1360
道のり(km)x60x+1360
往復は行きと帰りの道のりが同じなので 行きの道のり=帰りの道のり で式をつくる。
A町からB町までの道のりをxkmとする。
x4+x+0.73.5=46260
【答】14km
B君の速さを毎分xmとする。
9×236+9x=50×236-50x
【答】毎分164m
【解説】反対方向に回る場合, 二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
道のり=速さ×時間より
9×236+9x=1周の道のり
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越すので
50×236-50x=1周のみちのり
9×236+9xと50×236-50xはともに1周の道のりを表すので = で結ぶと
9×236-9x=50×236-50x
これを解くとx=164
全男子数をx人とする
310x+210(460-x)=116
【答】240人
【解説】全男子数をx人とすると、全女子数は(460-x)人である。
自転車通学の男子は310x、女子は210(460-x)となる。
これらの合計が116となることから方程式をつくる。
原価をx円とする
810×1500 =1210x
【答】1000円
【式】3%の食塩水をxg混ぜるとする
 10.8+3100x+4100(230-x)=19.2
【答】3%が80g, 4%が150g
© 2006- 2022 SyuwaGakuin All Rights Reserved pc