<
放物線y=ax2とm<0の直線y=mx+12について、-2≦x≦6でのyの変域が一致する。
aとmの値をそれぞれ求めよ。
まず、放物線のaがプラスかマイナスかを見極める
$s2
xの変域が-2≦x≦6
直線の切片が12で、
放物線のaはプラスか、マイナスかわからない。
aがプラスならyの最小値が0,
aがマイナスならyの最大値が0であるが、
直線の切片が12だから最大値が0にはならないので
a>0である。
変域内の放物線だけにすると
図から放物線でx=6のときがyの最大値となり
最小値は0である。
x=6をy=ax2に代入するとy=36a,
つまりyの変域は0≦y≦36a
この変域にあうように傾き負の直線を書くと
直線は(6,0)と(-2,36a)を通ることがわかる。
y=mx+12に(6,0)を代入するとm=-2,
y=-2x+12に(-2, 36a)を代入するとa=49