中1
文章題 割引・割増 _3
定価800円の商品を定価の1割引で売ったが、まだ原価の44%の利益があった。この商品の原価を求めよ。
原価をx円とする
800×910=144100x
【答】500円
原価900円の商品に定価をつけて、定価の4割引きで売ってもまだ原価の25%の利益があるようにしたい。定価をいくらにすればよいか。
定価をx円とする
610x=125100×900
【答】1875円
ある品物を仕入れて、原価の8割の利益を見込んで定価をつけた。定価では全く売れなかったので250円引きで売った。品物1個につき70円の利益になった。原価を求めよ。
原価をx円とする
1810x-250=x+70
【答】400円
【解説】原価をx円とすると、原価の8割の利益を見込んでつけた定価は1810x円である。
売値はここか250円引いたものなので、(1810x-250)円となる。
売値 = 原価+利益から式をつくるある品物を仕入れて、原価の48%の利益を見込んで定価をつけた。定価では売れなかったので900円引きで売った。品物1個につき原価の12%の利益になった。原価を求めよ。
原価をx円とする
148100x-900=112100x
【答】2500円
【解説】原価をx円とすると原価の48%の利益を見込んでつけた定価は148100x円である。そこから900円引きで売った売値は(148100x-900)円となる。
また、原価の12%の利益になったとの記述から売値は 112100xとも表せる。2通りであらわした売値を=で結んで式をつくる。 ある品物を仕入れて、原価の7割の利益を見込んで定価をつけた。定価では全く売れなかったので定価の4割引きで売った。品物1個につき10円の利益になった。原価を求めよ。
原価をx円とする
610×1710x=x+10
【答】500円
【解説】原価をx円とすると、原価の7割の利益を見込んだ定価は1710x円である。この定価の4割引きの売値は1710x× 610 円となる。
売値 = 原価+利益 から式をつくる。
解答 表示
原価をx円とする
800×910=144100x
【答】500円
定価をx円とする
610x=125100×900
【答】1875円
原価をx円とする
1810x-250=x+70
【答】400円
【解説】原価をx円とすると、原価の8割の利益を見込んでつけた定価は1810x円である。
売値はここか250円引いたものなので、(1810x-250)円となる。
売値 = 原価+利益から式をつくる
原価をx円とする
148100x-900=112100x
【答】2500円
【解説】原価をx円とすると原価の48%の利益を見込んでつけた定価は148100x円である。そこから900円引きで売った売値は(148100x-900)円となる。
また、原価の12%の利益になったとの記述から売値は 112100xとも表せる。2通りであらわした売値を=で結んで式をつくる。
原価をx円とする
610×1710x=x+10
【答】500円
【解説】原価をx円とすると、原価の7割の利益を見込んだ定価は1710x円である。この定価の4割引きの売値は1710x× 610 円となる。
売値 = 原価+利益 から式をつくる。