答表示

中1 文章題 割引・割増 _1

定価750円の商品を定価の30%引で売ったが、まだ原価の5%の利益があった。この商品の原価を求めよ。
原価をx円とする
750×70100=105100x
【答】500円

原価800円の商品に定価をつけて、定価の3割引きで売ってもまだ原価の4割の利益があるようにしたい。定価をいくらにすればよいか。
定価をx円とする
710x=800×1410
【答】1600円

ある品物を仕入れて、原価の5割の利益を見込んで定価をつけた。定価では全く売れなかったので700円引きで売った。品物1個につき100円の利益になった。原価を求めよ。
原価をx円とする
1510x-700=x+100
【答】1600円
【解説】原価をx円とすると、原価の5割の利益を見込んでつけた定価は1510x円である。
売値はここから700円引いたものなので、(1510x-700)円となる。
売値 = 原価+利益 から式をつくる

ある品物を仕入れて、原価の6割の利益を見込んで定価をつけた。定価では売れなかったので240円引きで売った。品物1個につき原価の4割の利益になった。原価を求めよ。
原価をx円とする
1610x-240=1410x
【答】1200円
【解説】原価をx円とすると原価の6割の利益を見込んでつけた定価は1610x円である。そこから240円引きで売った売値は(1610x-240)円となる。
また、原価の4割の利益になったとの記述から売値は 1410xとも表せる。2通りであらわした売値を=で結んで式をつくる。

ある品物を仕入れて、原価の4割の利益を見込んで定価をつけた。定価では全く売れなかったので定価の2割引きで売った。品物1個につき180円の利益になった。原価を求めよ。
原価をx円とする
810×1410x=x+180
【答】1500円
【解説】原価をx円とすると、原価の4割の利益を見込んだ定価は1410x円である。この定価の2割引きの売値は1410810 円となる。
売値 = 原価+利益から式をつくる。

解答 表示
原価をx円とする
750×70100=105100x
【答】500円

定価をx円とする
710x=800×1410
【答】1600円

原価をx円とする
1510x-700=x+100
【答】1600円
【解説】原価をx円とすると、原価の5割の利益を見込んでつけた定価は1510x円である。
売値はここから700円引いたものなので、(1510x-700)円となる。
売値 = 原価+利益から式をつくる

原価をx円とする
1610x-240=1410x
【答】1200円
【解説】原価をx円とすると原価の6割の利益を見込んでつけた定価は1610x円である。そこから240円引きで売った売値は(1610x-240)円となる。
また、原価の4割の利益になったとの記述から売値は 1410xとも表せる。2通りであらわした売値を=で結んで式をつくる。

原価をx円とする
810×1410x=x+180
【答】1500円
【解説】原価をx円とすると、原価の4割の利益を見込んだ定価は1410x円である。この定価の2割引きの売値は1410810 円となる。
売値 = 原価+利益から式をつくる。

© 2006- 2022 SyuwaGakuin All Rights Reserved pc