答表示

中1 文章題 割合 _1

ある中学校の全生徒数は312人である。女子の人数が男子の人数の108%のとき、この中学校の男子の人数を求めよ。
男子の人数をx人とする
x+108100x=312
【答】150人

ある中学校では全校生徒の48%が女子である。男子の人数は女子の人数より13人多い。この学校の全校生徒の人数を求めよ。
全校生徒数をx人とする
52100x-48100x=13
【答】325人
【解説】女子が48%なので100-48=52%が男子である。全校生徒をx人とすると女子は48100x、男子は52100xとなる。男子が女子より13人多いので男子の人数-女子の人数=13で式をつくる。

全校生徒460人のうち、自転車通学の割合は男子が全男子数の3割で、女子は全女子数の2割である。 自転車通学の人数は男女合わせて116人である。この学校の全男子数を求めよ。
全男子数をx人とする
310x+210(460-x)=116
【答】240人
【解説】全男子数をx人とすると、全女子数は(460-x)人である。
自転車通学の男子は310x、女子は210(460-x)となる。
これらの合計が116となることから方程式をつくる。

姉と弟がアメを持っている。姉は弟に比べて12個多く持っていた。姉が弟に自分のアメの15%をあげたので二人のアメの数がちょうど同じになった。 アメは全部で何個あったか。
姉が持っていたアメをx個とする。
85100x=15100x+x-12
【答】68個
【解説】求めるものは全部のアメの数だが、割合15%のもとになる数が姉がはじめに持っていた数なのでそれをxにする。
はじめxx-12
移動- 15100x+ 15100x
あとx- 15100 xx-12 + 15100x

はじめ姉がいくつかのアメを持っていた。妹は持っていなかったので、姉は自分の持っていたアメの4割を妹にあげた。 姉は残ったアメの6割を食べ、妹はもらったアメのうち4つを食べると姉と妹の持っているアメの数が同じになった。 姉がはじめに持っていたアメの数を求めよ。
はじめに姉が持っていたアメの数をx個とする。
410×610x=410x-4
【答】25個
【解説】姉の持っていたアメをxとすると、妹にその4割をあげたので、自分には6割が残る。 はじめx0移動後610x410x食後410×610x410x-4
食べた後の2人のアメの数が同じなので=で結んで式を作る。

解答 表示
男子の人数をx人とする
x+108100x=312
【答】150人

全校生徒数をx人とする
52100x-48100x=13
【答】325人
【解説】女子が48%なので100-48=52%が男子である。全校生徒をx人とすると女子は48100x、男子は52100xとなる。男子が女子より13人多いので男子の人数-女子の人数=13で式をつくる。

全男子数をx人とする
310x+210(460-x)=116
【答】240人
【解説】全男子数をx人とすると、全女子数は(460-x)人である。
自転車通学の男子は310x、女子は210(460-x)となる。
これらの合計が116となることから方程式をつくる。

姉が持っていたアメをx個とする。
85100x=15100x+x-12
【答】68個
【解説】求めるものは全部のアメの数だが、割合15%のもとになる数が姉がはじめに持っていた数なのでそれをxにする。
はじめxx-12
移動- 15100x+ 15100x
あとx- 15100 xx-12 + 15100x

はじめに姉が持っていたアメの数をx個とする。
410×610x=410x-4
【答】25個
【解説】姉の持っていたアメをxとすると、妹にその4割をあげたので、自分には6割が残る。 はじめx0移動後610x410x食後410×610x410x-4
食べた後の2人のアメの数が同じなので=で結んで式を作る。

© 2006- 2022 SyuwaGakuin All Rights Reserved pc