答表示

中1 文章題 過不足の問題 _2

あめを何人かの生徒に分ける。一人4個ずつ分けると10個あまり、一人6個ずつ分けると8個足りない。生徒の人数を求めなさい。
生徒の人数をx人とする
4x+10=6x-8
【答】9人,78
【解説】子供の数をxとして、折り紙の全枚数を2通りで表す。
一人の
枚数
67
人数xx
配る数6x7x
過不足+8-10
折り紙の
全枚数
6x+87x-10
4枚ずつ配って8枚あまっているので、折り紙の全枚数を表すと4x+8、5枚配ろうとして10枚足りないので、5x-10が全枚数である。折り紙の全枚数は同じものを表しているので=(等号)でつなげば方程式になる。

何人かの子どもにアメを配る。一人に7個ずつ配ると11個あまり、一人に9個ずつ配ると15個足りない。アメの数を求めよ。
子どもの人数をxとする。
7x+11=9x-15
【答】102個
【解説】求めるものはアメの数だが、子どもの人数をxにしたほうが式がたてやすい。
x人に7個ずつ配ると7x, 11個あまるのでアメの数は7x+11
x人に9個ずつ配ると9x, 15個足りないのでアメの数は9x-15
7x+11と9x-15はどちらもアメの数を表しているので=(等号)で結べる。
7x+11=9x-15
これを解くとx=13
求めるものはアメの数なので 7x+11に代入して 7×13+11=102

あるクラスでクラス会をする。一人1500円ずつ集めると6600円足りない。一人2000円ずつ集めると8400円あまる。生徒の人数を求めよ。
生徒の人数をx人とする。
1500x+6600=2000x-8400
【答】30人
【解説】※「配る」ときと、この問題のように「集める」ときで「あまる」「足りない」の表し方が逆になることに注意。
1500円ずつあつめて6600円足りないので、集めた1500xにさらに6600円足して目標金額に達する。つまり目標金額は1500x+6600である。
また、2000円ずつ集めて8400円余るので、2000xから余った8400円を引くと目標額になる。つまり2000x-8400が目標金額である。
1500x+6600と2000x-8400はともに目標金額を表しているので=(等号)で結んで方程式となる。

長いすがいくつかある。生徒全員が長いす1脚に4人ずつかけることにしたら、19人の生徒がかけられなかった。そこで、1脚に5人ずつかけたら、いすがちょうど3脚余った。長いすの数を求めよ。
長いすの数をx脚とする。
4x+19=5(x-3)
【答】34脚
【解説】全長いす数をxとすると4人ずつ座ると4x人座れるが、19人が座れないので生徒数は(4x+19)と表せる。
5人ずつ座るといすがちょうど3脚余ったので、5人座る長いすの数は(x-3)である。よって5(x-3)が生徒数となる。2通りで表した生徒数を=で結んで方程式とする。

クラス全員でお金を出し合って記念品を買う。一人400円ずつ集めると900円足りない、一人500円ずつ集めると1700円あまる。クラスの生徒数を求めよ。
クラスの人数をx人とする。
400x+900=500x-1700
【答】26人
【解説】クラスの人数をx人とすると、一人400円ずつだと400x円集まるが、900円足りないので、400x+900が記念品の値段である。
また、500円ずつ集めた500xでは1700円あまるので、500x-1700が記念品の値段となる。
2通りで表した記念品の値段を=(等号)で結んで方程式とする。

解答 表示
生徒の人数をx人とする
4x+10=6x-8
【答】9人,78
【解説】子供の数をxとして、折り紙の全枚数を2通りで表す。
一人の
枚数
67
人数xx
配る数6x7x
過不足+8-10
折り紙の
全枚数
6x+87x-10
4枚ずつ配って8枚あまっているので、折り紙の全枚数を表すと4x+8、5枚配ろうとして10枚足りないので、5x-10が全枚数である。折り紙の全枚数は同じものを表しているので=(等号)でつなげば方程式になる。

子どもの人数をxとする。
7x+11=9x-15
【答】102個
【解説】求めるものはアメの数だが、子どもの人数をxにしたほうが式がたてやすい。
x人に7個ずつ配ると7x, 11個あまるのでアメの数は7x+11
x人に9個ずつ配ると9x, 15個足りないのでアメの数は9x-15
7x+11と9x-15はどちらもアメの数を表しているので=(等号)で結べる。
7x+11=9x-15
これを解くとx=13
求めるものはアメの数なので 7x+11に代入して 7×13+11=102

生徒の人数をx人とする。
1500x+6600=2000x-8400
【答】30人
【解説】※「配る」ときと、この問題のように「集める」ときで「あまる」「足りない」の表し方が逆になることに注意。
1500円ずつあつめて6600円足りないので、集めた1500xにさらに6600円足して目標金額に達する。つまり目標金額は1500x+6600である。
また、2000円ずつ集めて8400円余るので、2000xから余った8400円を引くと目標額になる。つまり2000x-8400が目標金額である。
1500x+6600と2000x-8400はともに目標金額を表しているので=(等号)で結んで方程式となる。

長いすの数をx脚とする。
4x+19=5(x-3)
【答】34脚
【解説】全長いす数をxとすると4人ずつ座ると4x人座れるが、19人が座れないので生徒数は(4x+19)と表せる。
5人ずつ座るといすがちょうど3脚余ったので、5人座る長いすの数は(x-3)である。よって5(x-3)が生徒数となる。2通りで表した生徒数を=で結んで方程式とする。

クラスの人数をx人とする。
400x+900=500x-1700
【答】26人
【解説】クラスの人数をx人とすると、一人400円ずつだと400x円集まるが、900円足りないので、400x+900が記念品の値段である。
また、500円ずつ集めた500xでは1700円あまるので、500x-1700が記念品の値段となる。
2通りで表した記念品の値段を=(等号)で結んで方程式とする。

© 2006- 2022 SyuwaGakuin All Rights Reserved pc