中1
文章題 池の周り _3
湖の周りに1周4800mの道がある。たかし君とひろこさんが自転車で回る。たかし君の速さは時速15km, ひろこさんの速さは時速9kmである。二人が同時に同じ場所から出発して反対方向に回る場合、二人がはじめて出会うのは出発から何分後か。
出発してからの時間をx分とする。
250x+150x=4800
【答】12分後
【解説】求める時間の単位を分にすると,速さの単位も時速kmから分速mに直す必要がある。時速15kmは15×1000÷60=250 分速250m, 時速9kmは9×1000÷60=150 分速150mである。
反対方向に回る場合, 二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
道のり=速さ×時間なので
たかし君の走った道のり = 250x
ひろこさんの走った道のり = 150x
これらの和が1周の道のりに等しいので
250x+150x=4800
これを解くとx=12池の周りに1周2000mの道がある。姉と弟が同時に同じ場所から出発して同じ方向に歩く。姉は時速3.6km, 弟は時速2.4kmの場合、はじめて姉が弟を追い越すのは出発から何分後か。
出発してからの時間をx分とする。
60x-40x=2000
【答】100分後
【解説】求める時間を分にすると,速さの単位を時速kmから分速mに直す必要がある。時速3.6kmは3.6×1000÷60=60 分速60m,時速2.4kmは2.4×1000÷60=40 分速40m
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
この場合,姉と弟の歩いた道のりの差が2000mになったときである。
道のり=速さ×時間なので
姉の歩いた道のり =60x
弟の歩いた道のり= 40x
これらの差が1周分なので
60x-40x=2000
これを解くと
x=100 湖の周りを1周する道がある。A君とB君がこの道を歩く。同じ地点から同時に出発して反対方向に回ると12分30秒後にはじめて出会い, 同じ方向に回ると43分45秒でA君がB君をはじめて追い越す。二人は常に一定の速さで歩くものとし, A君の速さはB君の速さより毎分32mだけ速い。このとき, A君とB君の速さはそれぞれ毎分何mか求めよ。
B君の速さを毎分xmとする。
252(x+32)+252x=1754(x+32)-1754x
【答】A君毎分72m, B君毎分40m
【解説】A君はB君より毎分32mだけ速いので,A君の速さは毎分(x+32)m
反対方向に回る場合,二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
12分30秒を分に直すと12+3060=252分なので
道のり=速さ×時間より
252(x+32)+252x=1周の道のり
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
43分45秒を分に直すと43+4560=1754分なので
1754(x+32)-1754x=1周のみちのり
252(x+32)+252xと1754(x+32)-1754xはともに1周の道のりを表すので=で結ぶと
252(x+32)+252x=1754(x+32)-1754x
これを解くとx=40これがB君の速さなのでA君の速さは40+32=72
解答 表示
出発してからの時間をx分とする。
250x+150x=4800
【答】12分後
【解説】求める時間の単位を分にすると,速さの単位も時速kmから分速mに直す必要がある。時速15kmは15×1000÷60=250 分速250m, 時速9kmは9×1000÷60=150 分速150mである。
反対方向に回る場合, 二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
道のり=速さ×時間なので
たかし君の走った道のり = 250x
ひろこさんの走った道のり = 150x
これらの和が1周の道のりに等しいので
250x+150x=4800
これを解くとx=12
出発してからの時間をx分とする。
60x-40x=2000
【答】100分後
【解説】求める時間を分にすると,速さの単位を時速kmから分速mに直す必要がある。時速3.6kmは3.6×1000÷60=60 分速60m,時速2.4kmは2.4×1000÷60=40 分速40m
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
この場合,姉と弟の歩いた道のりの差が2000mになったときである。
道のり=速さ×時間なので
姉の歩いた道のり =60x
弟の歩いた道のり= 40x
これらの差が1周分なので
60x-40x=2000
これを解くと
x=100
B君の速さを毎分xmとする。
25/2(x+32)+25/2x=175/4(x+32)-175/4x
【答】A君毎分72m, B君毎分40m
【解説】A君はB君より毎分32mだけ速いので,A君の速さは 毎分(x+32)m
反対方向に回る場合, 二人の走った道のりの和が1周の道のりに等しくなるときはじめて出会う。
12分30秒を分に直すと12+30/60=25/2分なので
道のり=速さ×時間より
25/2(x+32)+25/2x=1周の道のり
同じ方向に回る場合,速いほうが1周差をつけたときにはじめて遅い方を追い越す。
43分45秒を分に直すと43+45/60=175/4分なので
175/4(x+32)-175/4x=1周のみちのり
25/2(x+32)+25/2xと175/4(x+32)-175/4xはともに1周の道のりを表すので = で結ぶと
25/2(x+32)+25/2x=175/4(x+32)-175/4x
これを解くとx=40これがB君の速さなので A君の速さは 40+32=72