答表示

中1 文章題 2けたの自然数 _1

一の位の数と十の位の数との和が13となる2けたの自然数がある。この自然数の十の位と一の位の数を入れ替えた数はもとの数より45大きくなる。もとの2けたの自然数を求めよ。
一の位の数をxとする。
x+10(13-x)+45=10x+13-x
【答】49
【解説】一の位と十の位の和が13なので、一の位がxなら十の位は(13-x)である。
2けたの自然数はx + 10(13-x)となり、一の位と十の位を入れ替えると10x + (13-x)となる。

一の位の数が十の位の数より4大きい2けたの自然数がある。この自然数の一の位の数と十の位の数を入れ替えた数をもとの数にたすと110になる。もとの自然数を求めよ。
一の位の数をxとする。
x+10(x-4)+10x+x-4=110
【答】37
【解説】一の位が十の位より4大きいので、一の位がxなら十の位は(x-4)である。
2けたの自然数はx + 10(x-4)となり、一の位と十の位を入れ替えると10x + (x-4)となる。

一の位の数が十の位の数のちょうど4倍になるような2けたの自然数がある。この2けたの自然数の一の位と十の位の数を入れ替えた数はもとの自然数より54大きくなる。もとの2けたの自然数を求めよ。
十の位の数をxとする。
40x+x-(4x+10x)=54
【答】28
【解説】一の位が十の位の4倍なので十の位の数をxとすると一の位は4xとなる。すると2けたの自然数は4x+10x、一の位と十の位を入れ替えた数は40x+xとなる。

一の位の数が十の位の数の2倍より1大きい2けたの自然数がある。この2けたの自然数の一の位と十の位を入れ替えた数をもとの自然数にたすと110になる。もとの2けたの自然数を求めよ。
十の位の数をxとする。
2x+1+10x+10(2x+1)+x=110
【答】37
【解説】一の位の数が十の位の数の2倍より1大きいので、十の位の数をxとすると一の位の数は2x+1である。2けたの自然数は2x+1+10x,一の位と十の位の数を入れ替えると10(2x+1)+xとなる。

解答 表示
一の位の数をxとする。
x+10(13-x)+45=10x+13-x
【答】49
【解説】一の位と十の位の和が13なので、一の位がxなら十の位は(13-x)である。
2けたの自然数はx + 10(13-x)となり、一の位と十の位を入れ替えると10x + (13-x)となる。

一の位の数をxとする。
x+10(x-4)+10x+x-4=110
【答】37
【解説】一の位が十の位より4大きいので、一の位がxなら十の位は(x-4)である。
2けたの自然数はx + 10(x-4)となり、一の位と十の位を入れ替えると10x + (x-4)となる。

十の位の数をxとする。
40x+x-(4x+10x)=54
【答】28
【解説】一の位が十の位の4倍なので十の位の数をxとすると一の位は4xとなる。すると2けたの自然数は4x+10x、一の位と十の位を入れ替えた数は40x+xとなる。

十の位の数をxとする。
2x+1+10x+10(2x+1)+x=110
【答】37
【解説】一の位の数が十の位の数の2倍より1大きいので、十の位の数をxとすると一の位の数は2x+1である。2けたの自然数は2x+1+10x,一の位と十の位の数を入れ替えると10(2x+1)+xとなる。

© 2006- 2022 SyuwaGakuin All Rights Reserved pc